Sugerencias para el diseño de circuitos impresos desde el ángulo de soldadura

Sugerencias para el diseño de circuitos impresos desde el ángulo de soldadura

When designing a circuit board, there are several things to keep in mind, including the soldering angle. In general, you should avoid soldering with your face directly above the joint. To avoid this, try to place the power and ground planes on the inner layers of the board and align components in a symmetrical manner. In addition, avoid forming 90-degree trace angles.

Place power and ground planes in the inner layers of the board

When designing a circuit board, it is important to place power and ground planes in the inner layers. This helps minimize the amount of EMI, which can result from the proximity of high-speed signals to a ground plane. Ground planes are also necessary for reducing the amount of volt drop on a power rail. By placing power and ground planes in the inner layers, you can make room on the signal layers.

Once you’ve made sure that the power and ground planes are in the inner layers, you can move onto the next step of the process. In the Layer Stack Manager, add a new plane and assign a network label to it. After the network label is assigned, double-click on the layer. Be sure to consider the distribution of components, such as I/O ports. You also want to keep the GND layer intact.

Avoid soldering with your face directly above the joint

Soldering with your face directly above the joint is a bad practice because the solder will lose heat to the ground plane and you’ll end up with a brittle joint. It can also cause a lot of problems, including excessive buildup on the pin. To avoid this, make sure that the pins and pads are both evenly heated.

The best way to avoid soldering with your face directly above a joint is to use flux. This helps transfer heat, and it also cleans the metal surface. Using flux also makes the solder joint smoother.

Place components with the same orientation

When laying out a PCB layout, it’s important to place components with the same orientation from the soldering angle. This will ensure proper routing and an error-free soldering process. It also helps to place surface mount devices on the same side of the board, and through-hole components on the top side.

The first step in laying out a layout is to locate all the components. Typically, components are placed outside the square outline, but this does not mean that they cannot be placed inside. Next, move each piece into the square outline. This step helps you understand how components are connected.

Avoid creating 90-degree trace angles

When designing a PCB layout, it is important to avoid creating 90-degree trace angles. These angles result in narrower trace width and increased risks of shorting. If possible, try to use 45-degree angles instead. These are also easier to etch and can save you time.

Creating 45-degree angle traces on your PCB layout will not only look better, but it will also make the life of your PCB manufacturer easier. It also makes copper etching easier.

Using 45-degree angles for etching

Using 45-degree angles for solder in PCB layout design is not a common practice. In fact, it’s a bit of a relic from the past. Historically, circuit boards have had right-angled corners and a lack of any solder mask. This is because early circuit boards were made without solder masks, and the process involved a process called photosensitization.

The problem with using angles larger than 90 degrees is that they tend to lead to copper migration and acid traps. Likewise, traces drawn on a layout at a right angle do not get as much etching. In addition, 90-degree angles can create partially traced angles, which can result in shorts. Using 45-degree angles is not only easier but safer, and will result in a cleaner and more accurate layout.

Choosing the appropriate package size

When planning a PCB layout, you must pay attention to the soldering angle and package size of the components on the board. This will help you minimize shadow effect problems. Typically, solder pads must be spaced at least 1.0mm apart. Also, be sure that through-hole components are placed on the top layer of the board.

The orientation of the components is another important factor. If the components are heavy, they should not be placed in the center of the PCB. This will reduce board deformation during the soldering process. Place smaller devices near the edges, while larger ones should be placed on the top or bottom side of the PCB. For example, polarized components should be aligned with positive and negative poles on one side. Also, be sure to place taller components next to smaller ones.

Tres consejos para reducir el riesgo en el diseño de placas de circuito impreso

Tres consejos para reducir el riesgo en el diseño de placas de circuito impreso

Hay muchas formas de reducir el riesgo asociado al diseño de placas de circuito impreso. Algunas de ellas son orientar todos los componentes en la misma dirección y utilizar múltiples vías en las transiciones de capa. Otras son mantener separados los circuitos analógicos y digitales y alejar los circuitos oscilatorios del calor.

Orientar los componentes en la misma dirección

El riesgo de diseño de las placas de circuito impreso se minimiza orientando los componentes en la misma dirección. Esta práctica ayuda a minimizar el tiempo de montaje y manipulación, y reduce las repeticiones y los costes. Orientar los componentes en la misma dirección también ayuda a reducir la probabilidad de que un componente se gire 180 grados durante las pruebas o el montaje.

La orientación de los componentes comienza con la construcción de la huella. Una huella incorrecta puede dar lugar a piezas mal conectadas. Por ejemplo, si un diodo se orienta con su cátodo apuntando en una dirección, el cátodo podría estar conectado a la patilla equivocada. Además, las piezas de varias patillas pueden instalarse con una orientación incorrecta. Esto puede hacer que las piezas floten sobre las almohadillas o se levanten, lo que provoca un efecto de tombstoning.

En las antiguas placas de circuitos, la mayoría de los componentes estaban orientados en una dirección. Sin embargo, las placas de circuitos modernas deben tener en cuenta las señales que se mueven a altas velocidades y están sujetas a problemas de integridad de la energía. Además, hay que tener en cuenta los aspectos térmicos. Por ello, los equipos de diseño deben encontrar un equilibrio entre rendimiento eléctrico y facilidad de fabricación.

Utilización de múltiples vías en las transiciones de capa

Aunque no es posible eliminar por completo las vías en las transiciones de capa, sí se puede minimizar la radiación procedente de ellas utilizando vías de cosido. Estas vías deben estar cerca de las vías de señal para minimizar la distancia que recorre la señal. Es importante evitar el acoplamiento en estas vías, ya que esto compromete la integridad de la señal mientras está en tránsito.

Otra forma de reducir el riesgo en el diseño de placas de circuito impreso es utilizar múltiples vías en las transiciones entre capas. Así se reduce el número de patillas de la placa y se mejora la resistencia mecánica. También ayuda a reducir la capacitancia parásita, algo especialmente importante cuando se trabaja con altas frecuencias. Además, el uso de múltiples vías en las transiciones de capa también permite utilizar pares diferenciales y piezas con un elevado número de patillas. Sin embargo, es importante mantener bajo el número de señales paralelas para minimizar el acoplamiento de señales, la diafonía y el ruido. También se recomienda encaminar las señales de ruido por separado en capas distintas para reducir el acoplamiento de señales.

Alejar el calor de los circuitos oscilatorios

Una de las cosas más importantes que hay que tener en cuenta al diseñar una placa de circuito impreso es mantener la temperatura lo más baja posible. Para conseguirlo, hay que tener cuidado con la disposición geométrica de los componentes. También es importante alejar las líneas de alta corriente de los componentes térmicamente sensibles. El grosor de las pistas de cobre también influye en el diseño térmico de las placas de circuito impreso. El grosor de las trazas de cobre debe proporcionar una vía de baja impedancia para la corriente, ya que una resistencia elevada puede provocar una pérdida de potencia y una generación de calor significativas.

Mantener el calor alejado de los circuitos osciladores es una parte crítica del proceso de diseño de la placa de circuito impreso. Para un rendimiento óptimo, los componentes del oscilador deben colocarse cerca del centro de la placa, no cerca de los bordes. Los componentes cercanos a los bordes de la placa tienden a acumular mucho calor, y esto puede elevar la temperatura local. Para reducir este riesgo, los componentes de alta potencia deben situarse en el centro de la placa de circuito impreso. Además, las trazas de alta corriente deben alejarse de los componentes sensibles, ya que pueden provocar la acumulación de calor.

Evitar las descargas electrostáticas

Evitar las descargas electrostáticas al diseñar placas de circuito impreso es un aspecto esencial de la ingeniería electrónica. Las descargas electrostáticas pueden dañar los chips semiconductores de precisión del circuito. También puede fundir los cables de conexión y cortocircuitar las uniones PN. Por suerte, existen muchos métodos técnicos para evitar este problema, como el trazado y la estratificación adecuados. La mayoría de estos métodos pueden aplicarse sin apenas modificar el diseño.

En primer lugar, debe comprender cómo funciona la ESD. En pocas palabras, la ESD hace que fluya una gran cantidad de corriente. Esta corriente viaja a tierra a través del chasis metálico del dispositivo. En algunos casos, la corriente puede seguir múltiples caminos hacia la tierra.

Causas y soluciones de la pseudosoldadura de PCBA

Causas y soluciones de la pseudosoldadura de PCBA

PCBA pseudo soldering is a problem that affects the quality of the finished PCBA. It can cause losses due to rework, which reduces the production efficiency. However, detecting and solving pseudo soldering problems can be done using inspection.

Reflow soldering

Reflow soldering is one of the most common methods of PCB assembly. This method is often combined with wave soldering. It can greatly affect the quality of the assembled board, which is why the process requires a proper understanding of PCB construction.

To ensure a quality solder joint, it is important to follow several guidelines. First, it is important to check the alignment of the printed board. Make sure that the print is properly aligned before applying the solder paste. Second, clean the stencil bottom regularly. Third, reflow soldering can result in a tombstone effect, otherwise known as the Manhattan effect. The tombstone effect is caused by force imbalances during the reflow soldering process. The end result looks like a tombstone in a cemetery. In reality, the tombstone effect is an open circuit on a defunct PCB.

During the preheat stage, a small portion of the solder paste can gasify. This can cause a small amount of solder to leave the soldering pad, especially under chip components. In addition, melted solder paste may push out under sheet-type resistor-capacitor units.

Soldadura por ola

PCB assembly process defects, including tombstoning, occur in a variety of ways. One of the main causes is inadequate soldering quality. Poor soldering results in cracks that appear on the surface of discrete components. These defects can be easily corrected with rework, although they can create a wide range of problems in the assembly process.

PCB manufacturers need to be aware of these defects to prevent them from occurring in the production process. These defects may be hard to detect, but different technologies and methods can help detect them and minimize their impact. These methods allow manufacturers to prevent soldering defects before they occur and help them produce high-quality products.

Stencil thickness

PCB pseudo-soldering can be caused by a number of factors. For example, an incorrect stencil can lead to over-applied solder paste on the components. Moreover, a poorly shaped stencil can result in solder balling or discrete deformities. These issues can be resolved by reducing the thickness of the stencil or the aperture size. However, these steps should be done with caution because even the slightest undersizing can lead to major problems in later PCB assembly stages.

PCB pseudo-soldering can be prevented by properly applying flux. Flux is a thixotropic agent that makes solder paste have pseudo-plastic flow characteristics. This means that it will reduce in viscosity when passing through the stencil’s apertures, but will recover once the external force is removed. The amount of flux used in solder paste should be eight to fifteen percent. Lower values will result in a thin solder film, while higher ones will cause excessive deposits.

Squeegee pressure

PCBA pseudo soldering, also known as cold soldering, is an in-between stage of the soldering process in which a portion of the board is not fully soldered. This can compromise the quality of the PCB board and affect its circuit characteristics. This defect may result in the scrapping or disqualification of the PCB board.

To control the squeegee pressure can solve the problem of pseudo soldering. Too much pressure will smear the solder paste and cause it to spread across the PCB’s flat surface. Alternatively, too little pressure will cause the solder paste to scoop up into larger apertures, causing the PCB to be covered with too much paste.

Research on PCB Plug Mechanism and Effective Control Method

Research on PCB Plug Mechanism and Effective Control Method

Pressurized microchambers

A pressurized microchamber is an effective means of transporting liquid in lab-on-PCB devices. It works by storing pneumatic energy and releasing it through an opening in a microvalve. The microvalve is electrically activated, using a gold wire of about 25 m in diameter.

Lab-on-PCB devices are currently being developed for a wide range of biomedical applications, but they are not yet commercially available. However, research in this field is growing rapidly and there is a significant potential for obtaining marketable devices. Various flow-driving methods have been developed, including electrowetting on dielectrics, electroosmotic flow driving, and phase-change-based flow driving.

The use of external sources for moving liquids inside lab-on-PCB systems has long been used in research, but it is not a particularly practical solution for a portable system. External syringe pumps also reduce the portability of the device. However, they provide an interesting opportunity to integrate sensors and actuators in a microfluidic device.

Electroosmotic pumps are also commonly integrated on PCBs for fluid manipulation. They offer a low-cost, pulse-free continuous flow of fluid, but require narrow microchannels and external liquid reservoirs. Inappropriate activation can result in electrolysis and microchannel blocking. Moreover, copper electrodes are not ideal because they can cause fluid contamination and microchannel blocking. Further, copper electrodes require additional fabrication steps and increase cost.

Laboratory-on-PCBs

Laboratory-on-PCBs (LoP) is a type of device that integrates an electronic circuit onto a PCB. This type of device is used to perform various experiments in electronic circuits. It is also used in applications that require the integration of different materials. These devices are compatible with flow-driving techniques and can also be produced by photolitographic or dry resist methods. Moreover, these devices also incorporate surface mounted electronic components that are designed to measure data. One such example is a device which integrates an embedded blue LED and an integrated temperature sensor.

Another option for moving liquids in Lab-on-PCBs is to use pressurized microchambers. The pressurized chambers can store pneumatic energy and can be released by opening a microvalve. The microvalves are activated electrically. One advantage of this type of mechanism is that it is portable and can be used multiple times. Moreover, it can withstand high pressures.

One of the main challenges of implementing microvalves into PCBs is the difficulty of integrating them into the PCB. It is also difficult to integrate actuators with moving parts into a PCB. However, researchers have developed micropumps that are PCB-based, and made use of piezoelectric actuators.

The process of using lab-on-PCBs to control liquids is highly complex and can be quite difficult. There are numerous drawbacks of this method, and the main difficulty is the complex fabrication process. Moreover, the method of assembly of LoPs also adds to the complexity of the device.