How to Handle PCB Boards Properly

How to Handle PCB Boards Properly

Learning how to handle PCB boards properly is important for a number of reasons. These include safety precautions, materials, and inspection. Performing these tasks correctly will ensure the safety of your products and ensure that your circuits perform as designed. Here are some tips to keep in mind when handling your PCBs.

Safety precautions

Safety precautions when handling PCB boards are essential to prevent damage to both components and the entire board. Using improper handling techniques can cause the board to break and become unusable. To prevent this problem, it is essential to protect the PCB from moisture. One way to do this is by baking the board.

ESD damage is a major concern when handling PCBs. Even a small amount of electrostatic discharge can damage components, and even the smallest of shocks can cause serious damage to internal circuitry. The best way to avoid damaging the PCB is to handle it with two hands. This will minimize the chance of damaging the board or causing it to bend.

PCBA development is an iterative process that requires proper handling to achieve optimal results. Handling a PCBA in an incorrect way can damage copper traces and prevent the optimal design from being achieved. Copper traces should also be protected against oxidation and damage by applying an appropriate surface finish.


Common problems with PCB boards include solder bridges. Solder bridges are areas where two traces are too close together and create a poor connection between the copper and component. To correct this problem, the PCB manufacturer should review the manufacturing process and control the amount of solder used during soldering. Solder can become contaminated during fabrication and may need to be replaced. The trace circuit may also be non-conductive due to aging, overheating, or voltage sags. Another problem can be a component that is dislodged from its board and needs to be reseated.

Many of these problems can be avoided by addressing the root causes of board failure. Most often, the root cause is human error. Poor soldering jobs, board misalignment, and other manufacturing flaws can lead to a faulty PCB. Human error accounts for approximately 64% of all PCB defects. Other common problems include poorly manufactured components with poor performance.


PCBs are made of many different materials. Among them are copper and aluminum. Copper is the most common. Copper clad PCBs are also common. Each material has its own thermal, mechanical, and electrical properties. Some materials are more suitable for specific PCB tasks than others.

The materials used for PCBs are determined by the PCB’s application and glass transition temperature (Tg). Tg is a measure of a material’s ability to resist moisture and chemicals. A higher Tg indicates a more durable PCB. Make sure the Tg matches your assembly process to ensure proper performance.

PTFE, also known as Teflon, is lightweight and strong. It also has good thermal and electrical properties and exhibits good flexibility. Moreover, PTFE is flame-resistant. FR-4, on the other hand, is a glass-reinforced epoxy laminate sheet made of woven fiberglass cloth and flame-resistant epoxy resin binder. Several benefits make it a popular choice for PCB manufacture.


Inspection of PCB boards is an important process for manufacturing electronic products. It helps determine whether the boards are defective, and helps predict the failure modes. Inspection of PCB boards also provides accurate data for yield determinations. The IPC has standards for the inspection of bare and assembled boards. Different types of circuit boards require different types of testing. For example, Class 3 printed circuit boards require the highest inspection frequency.

Most PCB manufacturers use the AOI (automated optical inspection) method for PCB inspection. This type of inspection uses a camera to examine the board and compare it to reference boards and ideal design specifications. The system can identify faults early on and minimize production costs.


The process to repair a PCB board can involve many different steps. One of the first steps is to determine the cause of the failure. The most common cause is physical damage, caused by shock or pressure. For instance, the device may have been dropped from a great height, or may have been hit by another object. Another cause could be disassembly, which may have damaged the board directly.

If the damage is a through-hole, you need to restore it before soldering a new component. To do this, first use a sharp knife to remove any debris from the through-hole. Next, use rubbing alcohol to clean it. Afterward, use a paper clip to expand the through-hole to fit the component lead. Then, insert the new component into the hole and solder it to the board.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *