SMD vs THT vs SMT

SMD vs THT vs SMT

When deciding which type of PCB to use, it’s important to understand the differences between SMD and THT. Each type has advantages and disadvantages. SMT requires advanced equipment and a custom stencil, while THT uses hand soldering to attach components. Because of these differences, SMT is generally the better choice for large-scale production and for high-speed applications. In contrast, THT is more appropriate for smaller projects and prototypes.

smd vs tht vs smt

In electronics, surface mount technology refers to the process of mounting electronic components directly onto a PCB. Its advantages include the ability to produce smaller PCBs. It replaces the traditional through-hole technology.

Typically, SM components are smaller than their through-hole counterparts and have contact terminals on the end of the component’s body. Many components are available in SMD packages, including capacitors, inductors, and resistors.

Surface mount devices are generally less expensive than their through-hole counterparts, but they require more sophisticated production technology and design. The increased capital investment is offset by higher throughput with a fully automated setup. The faster production time helps make them the better choice for many manufacturers.

The main differences between SMT and TH components are mechanical stability and fine-pitch requirements. In addition to being cheaper, SMT components are easier to assemble in large quantities, especially for smaller parts. Using Pick and Place machines and a Reflow Oven, SMT components are assembled at high speeds. However, SMT components require more training and expensive equipment to solder them properly.

THT requires more drilling than SMT, but it provides stronger mechanical bonds. It is suitable for high-reliability applications, where components are exposed to greater stress. However, the extra drilling is a drawback and increases the cost of the circuit board.

While SMT requires less drilling of the PCB, through-hole assembly can be much more expensive. However, it can be more efficient. In addition, SMT can produce smaller PCBs with fewer drill holes, which will save you money. In addition, SMT uses automated machines to place the components, which makes it cheaper than THT.

Surface mount technology is a budget-friendly alternative to through-hole technology, which requires highly skilled operators and expensive equipment. In addition to cost savings, surface mount components are more reliable than through-hole components. Surface mount technology also allows for higher component density per unit area.

However, SMT components are often smaller than through-hole components. Because of their size, they often require magnification to read their markings. This makes them less desirable for prototyping, rework, and repair, but it is possible to repair these components with a soldering iron. But this requires considerable skill and is not always feasible.

Surface mount devices come in many shapes and materials. They are classified into different categories. Some are passive, like capacitors and resistors. Others are active, such as diodes. A mixed device may combine both types of devices, such as an integrated circuit.

Surface mount technology is becoming the mainstay of the PCB industry, but it is important to keep in mind that through-hole technology may be better for certain applications. It is more reliable than surface mount technology, and it is used for many applications in the military. It is also easier to test, prototype, and replace components. A breadboard with through-hole components is ideal for prototyping.

6 Grundläggande regler för PCB-layout

6 Grundläggande regler för PCB-layout

PCB-layout innebär att man utformar en krets med flera lager. Några av de grundläggande reglerna för PCB-design är följande: Undvik flera jordplan. Gör analoga kretssignaler direkta och korta. Undvik att använda tre olika kondensatorer på ett och samma kretskort. Du kan också läsa våra artiklar om PCB-design med flera lager och hur man designar ett PCB med flera lager.

Utformning av en PCB med flera lager

När du designar ett flerlagers mönsterkort finns det några viktiga saker som du bör tänka på. En av dessa är att kopparspåren ska bibehålla signal- och effektintegritet. Om de inte gör det kan de påverka strömkvaliteten. Det är därför det är nödvändigt att använda spår med kontrollerad impedans. Dessa spår bör vara tjockare än normalt för att förhindra överhettning.

När du har klart för dig vad du vill ha kan du börja designa mönsterkortet. Det första steget i att designa ett flerskikts mönsterkort är att skapa en schematisk bild. Det kommer att fungera som grund för hela din design. Börja med att öppna ett fönster för schemaredigeraren. Du kan sedan lägga till och rotera detaljer efter behov. Se till att schemat är korrekt.

Skapa ett enda jordplan

Genom att skapa ett enda jordplan på en PCB-layout kan man minska mängden ojämna spänningar över ett kretskort. Detta åstadkoms genom att skapa vior eller genomgående hål för att ansluta jordplanet till andra delar av kortet. Det bidrar också till att minska brus som orsakas av variationer i returströmmen.

När man definierar ett jordplan på ett kretskort är det viktigt att se till att jordplanet inte täcks av ledande ringar eftersom detta kan leda till elektromagnetiska störningar eller till och med jordslingor. Helst bör jordplanet placeras under elektroniska komponenter. Det kan vara nödvändigt att omorganisera placeringen av vissa spår och komponenter för att passa jordplanet.

Hålla analoga kretssignaler direkta och korta

När man implementerar en PCB-layout för analoga kretsar är det viktigt att hålla de analoga signalspåren korta och direkta. Dessutom måste analoga komponenter placeras nära varandra, vilket förenklar direkt routing. Att hålla bullriga analoga komponenter nära mitten av kortet hjälper också till att minska bruset.

Förutom att hålla analoga kretssignaler direkta och korta bör konstruktörerna också undvika att hindra returvägarna. Planskivor, vior, slitsar och utskärningar kan orsaka brus när den analoga signalen söker den kortaste vägen tillbaka till sitt ursprung. Som ett resultat kan signalen vandra nära jordplanet och generera betydande brus.

Undvik tre olika kondensatorer

När du utformar en PCB-layout är det bäst att undvika att placera tre olika kondensatorer på effektstiften. Detta arrangemang kan leda till fler problem än det löser. Ett sätt att undvika tre separata kondensatorer är att använda spår och coffer fill. Placera dem sedan så nära enhetens stift som möjligt.

Detta är dock inte alltid möjligt, eftersom avståndet mellan spåren inte alltid är det som beräknades under konstruktionsfasen. Detta är ett vanligt problem som kan leda till problem under monteringsprocessen. När du överväger placering, kom ihåg att placeringen av varje komponent är avgörande för dess funktionalitet.

Använda kraftskikt koppar

Att använda koppar i kraftskiktet i PCB-layouten kräver ordentlig planering. I den här delen av kortet måste du avsätta ett specifikt område på kortet för kraftnätet. Du kan också använda inre lagerindelning för att allokera detta område. För att lägga till detta lager bör du använda kommandot "PLACE-SPLIT PLANE" och sedan välja det nätverk som ska tilldelas för split. När du har tilldelat området för kraftlagret kan du sedan använda kopparbeläggningstekniken för att placera kopparn i det delade området.

Förutom att uppnå en jämn koppartäckning måste du se till att kortets tjocklek är kompatibel med dess kärna. Att enbart använda symmetrin för effektplanet garanterar inte en perfekt koppartäckning, eftersom kopparn i denna del kommer att slitas sönder vid konturfräsning. Koppar upp till kortets kant är inte heller kompatibel med scoring-teknik (V-cut). För att undvika detta problem rekommenderar vi att du anger kopparzonen på det mekaniska lagret och att den har en minsta bredd på 0,5 mm.

Använda en lista med riktlinjer för att placera komponenter på ett kretskort

Att använda en lista med riktlinjer för att placera en komponent på ett mönsterkort kan bidra till att minimera den totala kostnaden för att utveckla en ny produkt och samtidigt förkorta produktutvecklingscykeln. Dessa riktlinjer hjälper också till att säkerställa en smidig övergång från prototyp till produktion. Dessa riktlinjer är tillämpliga på både analoga och digitala kretsar.

De flesta mönsterkortskonstruktörer följer en uppsättning riktlinjer när de utformar ett mönsterkort. En typisk regel är till exempel att minimera längden på spåren för digitala klockor. Många konstruktörer förstår dock inte riktigt vad som ligger bakom dessa riktlinjer. Bland annat får höghastighetsspår inte korsa luckor i signalreturplanet.

Hur man minimerar RF-effekten vid design av PCB-anslutningar

Hur man minimerar RF-effekten vid design av PCB-anslutningar

There are a number of different ways to minimize the RF effect in a PCB interconnect design. Some of these include ensuring that the traces are not in close proximity to one another, using a ground grid, and separating RF transmission lines from other traces.

Multilayer configuration

RF effect in PCB interconnect design is a common problem. This effect occurs mainly because of nonideal circuit properties. For example, if an IC is placed on two different circuit boards, its operating range, harmonic emissions, and interference susceptibility will be drastically different.

To minimize this effect, a multilayer configuration is necessary. Such a board should have a reasonable layout, high-frequency impedance, and simple low-frequency wiring. Using the correct substrate material minimizes signal loss, and it helps maintain consistent impedance throughout the circuits. This is crucial because signals transition from the circuit to the transmission lines, and they must have constant impedance.

Impedance is another issue with PCB interconnect design. It is the relative impedance of two transmission lines, beginning at the PCB surface and extending to the connector or coaxial cable. The higher the frequency, the more difficult it is to manage the impedance. Therefore, the use of higher frequencies seems to be a significant design challenge.

Creating a ground grid

One way to reduce the rf effect is to create a ground grid on your PCB. A ground grid is a series of box sections that is connected by traces to ground. Its purpose is to minimize the signal return path, while still maintaining low impedance. The ground grid can be either a single trace or a network of overlapping traces.

The ground plane acts as a reference to calculate the impedance of signal traces. In an ideal system, the return current stays on the same plane as the signal traces. However, in real systems, the return current may deviate from the ideal path due to various factors, including variations in the copper plating of the PCB and the laminate material used.

Separating RF transmission lines from other traces

When designing circuits with multiple traces, it is important to separate RF transmission lines from the rest of the circuit. Separation of these traces is important in order to prevent crosstalk. To achieve this, it is best to space RF transmission lines at least two trace widths apart. This distance reduces the amount of radiated emissions and minimizes the risk of capacitive coupling.

RF transmission lines are typically separated from other traces by striplines. In multi-layer printed circuit boards, striplines are most easily constructed on the inner layers. Like microstrip, striplines have ground planes above and below the RF transmission line. While striplines offer better isolation than microstrip, they tend to have a higher RF loss. For this reason, striplines are typically used for high-level RF signals.

Using PTFE ceramics

RF effect is a very real concern in PCB interconnect design. Due to high frequencies, the signals traveling on a trace can shift. This causes the dielectric constant to change depending on the speed of the signal and the tracing geometry. The dielectric constant of the PCB substrate material also affects the speed of the signal.

When comparing ceramics to solder, PTFE ceramics have an edge over FEP ceramics. While the former is cheaper and easier to fabricate, it will reduce signal reliability. Besides, PTFE ceramics are less likely to absorb moisture. However, if the PTFE ceramics are covered by hydrocarbons, the moisture absorption will increase.

Using symmetric stripline routing

Stripline routing is a common approach in digital circuit design. It uses a dielectric layer sandwiched between two ground planes with signal-carrying conductors in the center. This method is called symmetric stripline. Typical stripline dimensions are s=2.0, w=3.0, t=1.0, and b=5.0.

This method has two major advantages over microstrip. It allows for smaller traces, which provide more protection against aggressor signals. In addition, stripline routing can help minimize RF impact on the interconnect design. However, it requires careful consideration of the board layer stackup and the dielectric materials between ground planes.

As for the PCB track width, it should not exceed two inches. This is important for high-speed logic, which has a rise/fall time of five nanoseconds. It is advisable to terminate high-speed logic PCB tracks with a characteristic impedance, and to avoid voids in the reference plane.

EMI Degradation After Filling An Irrigation Pump

EMI Degradation After Filling An Irrigation Pump

There are two different ways to analyze EMI degradation after filling an irrigation pump: radiation and conduction. The EMI degradation after filling depends on the type of glue material and how the input grounding process is performed. The EMI degradation is worsened by ethanol and water.

EMI degradation after filling

EMI degradation after filling power supplies is often referred to as the ‘filling effect’, which describes the loss of EMI sensitivity after a power supply has been filled. The degradation is a combination of radiation and conduction. The ‘filling effect’ occurs because the materials that make up the power supply undergo a series of changes. Some of these changes may be undesirable, while others can be beneficial.

Unwanted electromagnetic energy (EMI) is radiation that propagates into space through inductive and capacitive coupling. This unwanted energy is harmful to electronic devices and affects their functionality. This radiation is non-conducting, meaning that the signal is not conducted through the metal or other material. When the signal travels a long distance, its propagation is in the form of a wave. The wave is dominated by the radiation field at a far distance, while the induction field dominates at near-surface distances. Non-ionizing radiation, on the other hand, does not ionize the gases and does not affect electronic devices. Examples of non-ionizing radiation include RF, microwave ovens, infrared, and visible light.

Static electricity is another EMI source. Although it is difficult to identify the source of this noise, it can originate from natural sources such as lightning. In addition to affecting the performance of electronic devices, EMI can also cause safety problems in many systems. The most common cause of EMI is electrostatic discharge. Non-technical people recognize this type of noise as radio static, distorted television reception, and clicks in audio systems.

EMI degradation after filling with water

EMI degradation after filling with water after power supply switching can be classified into two types: radiation and conduction. The EMI degradation after filling with water is usually induced by changes in the temperature of the input ground and the conductive material used to make the water-filled capacitor. The conductive material includes aluminum and copper fibers, which have the highest intrinsic electrical conductivity. However, the surface of these fibers is prone to oxidation, which can affect the conductivity of the components. Moreover, some unscrupulous merchants might not provide consistent products.

EMI can affect the safety and performance of electrical appliances. These unwanted signals can interfere with radio communications and cause malfunction in nearby equipment. Hence, EMI shielding is an essential requirement for electronic devices. Various methods and materials are used for EMI shielding. Listed below are some of them:

Continuous carbon fiber composites exhibit better EMI SE and are better conductive than their discontinuous counterparts. A continuous carbon fiber composite with a carbon matrix exhibits a EMI SE of 124 dB. On the other hand, discontinuous carbon fibers significantly reduce the SE of the composites.

Switching power supplies have improved over linear regulators in terms of efficiency, but they still introduce discontinuous currents which can negatively affect the reliability of the system. EMI analysis is easier to perform for conductive noise than for radiated noise. The conductive noise can be evaluated using standard circuit analysis techniques.

EMI degradation after filling with ethanol

Electromagnetic interference (EMI) can affect electronic components and devices in many ways. For example, if a capacitor is subjected to a voltage peak that is higher than its nominal voltage, it can suffer diolectric degradation. This degeneration can result in malfunction or burn, depending on the component’s characteristic.

Electromagnetic interference is a common problem in modern technology. It causes malfunctions of electronic devices and may lead to damage to communication systems. This interference is caused by a variety of sources, including sparks from motor brushes, power circuit switches, inductive and resistive loads, relays, and circuit breaks. Even the slightest amount of EMI can degrade the performance of an electronic device and impair its safety. The most common source of EMI is electrostatic discharge (ESD), which many people recognize as static on radio stations, distorted television reception, and clicks in audio systems.

EMI can also be generated by switching power supplies. These power supplies are strong sources of EMI and require careful control. It is crucial to quantify the output noise of these power supplies to reduce the risk of EMI. This is a time-consuming and expensive process.

How to Elegantly Arrange PCB Silkscreen

How to Elegantly Arrange PCB Silkscreen

There are a few things to consider when using PCB silkscreen. First, you have to decide how to arrange your silkscreen characters. This is very important because you will want to make sure they are not placed beneath a component or over a via pad. It is also important to make sure that the characters are not too big.

Using copper pads

PCB layout is a challenging process that requires careful planning. To achieve the desired result, it’s important to use the right tools and techniques. One way to do this is to use PROTEL AUTOTRAX under DOS, which enables you to edit strings and layouts. However, it is important to be aware that you may need to manually adjust pad sizes for two-legged chip components and four-row patch ICs.

Before you start creating a silkscreen, be sure to check with your CM for the recommended layout. Often, the CM will tell you to keep the silkscreen to only one side of the PCB.

Using reference designators

When designing a printed circuit board, using reference designators is a useful way to clearly identify components on the board. They usually start with a letter followed by a numeric value. Each reference designator will represent a particular class of component. Reference designators should be placed above the component so that they are clearly visible once it has been mounted on the PCB. Reference designators are usually painted with yellow or white epoxy ink or silkscreen.

The placement of reference designators is crucial. When placing a component on a PCB, ensure that it is placed as close as possible to its associated component. Similarly, if a component is placed vertically, it should have its reference designator on the bottom-left edge of the board. The placement of reference designators can reduce assembly errors. However, placing them beneath component symbols can make them difficult to read once mounted. Moreover, it is advisable not to place them on high-speed signal traces.

Using automatic alignment

PCBAs contain a variety of silkscreen markings and information. These include regulatory markings such as RoHS, FCC, and CE, as well as E-waste disposal markings. Additionally, there are PCBs with UL markings, which means the board has been fabricated by a UL-certified manufacturer.

These layers are then fused together using a process known as layer-up and bonding. The outer layer material consists of fiber glass or other material that has been pre-impregnated with epoxy resin, or prepreg. It also covers the original substrate and copper trace etchings. The layers are then assembled on a heavy steel table. The pins fit tightly into each other to prevent the layers from shifting.

The positioning of reference designators is very important. The designators should be close to the part they are meant to identify, and rotated appropriately to make them readable. It is also important that the part or component you are placing is not obscured by the silkscreen. This can make it difficult to read.

Manually specifying line widths

There are several reasons to manually specify line widths when arranging PCB silkscreened components. The first reason is that the line widths will have an impact on how your PCB silkscreen looks. If the line widths are too large or small, you may have trouble reading them. Additionally, too few lines may result in skips or blurry text. For this reason, it’s important to set a minimum line width of 0.15 mm (six mils). It is generally better to specify line widths of 0.18 mm to 20 mm.

There are other considerations as well, such as the size of the silkscreen fonts. If you are creating a silkscreen for a PCB, you should choose a font size of at least 0.05 inches for optimum readability. When placing reference designators, you should leave about 5 mils of space between each line. You should also ensure that they are oriented from left to right and bottom to top to avoid uneven silkscreening.

Using drafting features

PCB silkscreen is an important part of the finished circuit board and should be carefully crafted. To make sure your silkscreen looks its best, use the appropriate font sizes and line widths. Otherwise, you may end up with ink splots and a poor silkscreen layout.

One of the most common silkscreen errors is failing to mark polarized components clearly. For example, when drawing a PCB with electrolytic capacitors, always ensure that you mark the positive pin. For diodes, you should always use an “A” or “C” symbol to distinguish the anode from the cathode.

How to Use a Few Resistors to Improve the Accuracy of a Multimeter

How to Use a Few Resistors to Improve the Accuracy of a Multimeter

To improve the accuracy of your multimeter, you can use a few resistors and components. They should be held in place so that they stay in contact with the multimeter’s probes. Do not touch the resistors or components with your hands, as this will result in inaccurate readings. To avoid this problem, attach the components to a breadboard or use alligator clips to keep them in place.

Using shunt resistors

The resistance value of a shunt resistor is expressed in microOhms. The resistance of a shunt resistor is usually very small. Using this type of resistor improves the accuracy of the multimeter because it does not introduce undesired effects from lead resistance. It is important to use it with a Kelvin connection, however, because the resistance of shunt resistors tends to drift with the ambient temperature.

Multimeters are sensitive to load voltage, so operators must be vigilant about the burden voltage and resolution. Infrequent testing can result in unexpected product failures. Shunt resistors improve the accuracy of the multimeter by providing additional resolution. This is particularly useful for bench multimeters, which are capable of full-scale measurements.

Setting the correct range on an analog multimeter

To set the correct range on an analog multimeter, start by setting the ohms unit to its lowest value. In general, the resistance reading should be between 860 and 880 ohms. Alternatively, you can use the lower resistance range of 200 ohms for learning and practice.

A manual-ranging multimeter features a knob with many selection options. These are usually marked with metric prefixes. Auto-ranging multimeters, on the other hand, are automatically set to the appropriate range. In addition, they have a special “Logic” test function to measure digital circuits. For this function, you connect the red (+) lead to the anode and the black (-) lead to the cathode.

It may seem daunting to set the range on an analog multimeter, especially if you’ve never used one before. However, this task is surprisingly simple and can be done with a few resistors. As long as you’re aware of the different ranges, you’ll be more successful with this task.

Using precision current sensing resistors

The accuracy of a multimeter can be improved by using precision current sensing resistors. These components can be purchased in different styles. They are useful for applications where the correct amount of current entering and leaving a battery is necessary. They are also helpful for applications where temperature sensitivity is a concern.

The optimum footprint is C, with an expected measurement error of 1%. Recommended footprint dimensions are shown in Figure 6. The routing of the sensor trace also plays an important role in determining measurement accuracy. The highest accuracy is achieved when the sense voltage is measured at the resistor’s edge.

A current-sensing resistor is a low-value resistor that detects the flow of current and converts it to a voltage output. It is usually very low in resistance and therefore minimizes power loss and voltage drop. Its resistance value is usually on the milliohm scale. This type of resistor is similar to standard electrical resistors, but it is designed to measure the current in real time.

Touching the resistor or probe with your fingers

Multimeters also have a special feature that detects the positive and negative leads on a battery or power supply. Holding the multimeter probe against the lead for a few seconds will allow you to determine whether the current flowing through it is positive or negative. The red probe is connected to the positive battery terminal or wire.

When using a multimeter to measure resistance, you should make sure that the circuit is not powered on. Otherwise, you may receive an inaccurate reading. Remember that resistance is not as important as knowing how to measure it. Moreover, the current flowing in the circuit may damage the multimeter.

Testing continuity between holes on a breadboard

Before you measure resistance between holes on a breadboard, you should first check the breadboard’s connectivity. The test method is known as continuity check, and is a simple way to determine whether two connections are compatible. The breadboard has holes with a metal spring clip beneath each one. Connect the probes of your multimeter to both of these points. If you’re having trouble finding a conductive path between these points, attach a few resistors between the breadboard and the multimeter.

If you’re using a multimeter with a programmable feature, you can make it more accurate by testing continuity between a few holes at a time. To do this, insert the probes in the “+” and “-” columns of the breadboard and then measure the resistance across them. If the resistance is infinite, then the two rows are not connected.

Hur man kontrollerar lödfel på kretskort

Hur man kontrollerar lödfel på kretskort

There are several common types of PCB soldering defects. These defects include pin holes and blow holes. Pin holes are small holes in a solder joint, while blow holes are larger holes. Both of these defects are caused by improper hand soldering. During the soldering process, the moisture in the board is heated and turned into gas, which escapes through the molten solder. When this happens, the board becomes void, and pin holes and blow holes form.

Common types of PCB soldering defects

Several common types of PCB soldering defects can be attributed to improper soldering techniques. These problems include uneven heating and uneven distribution of heat. This can result in solder melting unevenly and may cause component tombstoning. This problem can be avoided by using proper solder paste and reflowing the board in a proper temperature range.

Defects in the soldering process can ruin a beautiful PCB design. These defects are rarely the fault of the designer, and are more likely to be the result of a manufacturing error. Manufacturers should know how to spot these issues during the inspection phase. In many cases, the problem lies in the wave soldering process.

Another common defect is solder balling, which results in tiny balls of solder adhering to the laminate or conductor surface. PCB soldering techniques should avoid this type of problem. PCBs that have solder balls will look lumpy and dull.

Common causes

Soldering defects are common problems that arise during the production process of PCB boards. These defects can result in short circuits, open joints, or crossed signal lines. They can also be caused by variations in solder temperature and humidity. In addition, improperly applied solder can cause a lopsided surface and uneven soldering.

One of the most common causes of PCB failure is heat and humidity. Different materials expand and contract at different rates, so constant thermal stress can weaken solder joints and damage components. For this reason, high-performance PCBs must be able to dissipate heat.

Insufficient wetting can also lead to weak solder joints. Soldering must be performed on a clean surface, and there must be a proper heat level for the solder iron. Failure to do so may result in a cold joint, which is lumpy and lacks bonding ability.

Common inspection methods

There are various PCB inspection methods, which are used to identify defects and ensure the quality of electronic products. These methods include visual inspection and automated testing. These tests are performed at several stages of the PCB assembly process. They can detect a variety of defects, including open solder joints, missing or incorrect components, and solder bridges.

The first step in identifying the PCB board soldering defects is to identify the components. To do this, you need to assign a reference designator, which is a letter followed by a number. Each component on a PCB has a unique reference designator. For example, a resistor is denoted by an R, whereas a capacitor is denoted by a C. These letters can vary from standard letters, but they are a reliable way to identify components. The next step is to choose the type of inspection test. This can be done by using an AOI, ICT, or functional testing.

Another common PCB board inspection method is X-ray inspection. This technique uses a machine that enables it to inspect the PCB from any angle. Currently, PCBA123 uses a 2D X-ray inspection system, but plans to upgrade to a 3D AXI in the near future.

Preventative measures

PCB board soldering defects can be caused by a number of different issues. Some problems can be easily identified, while others may not be visible. The best way to check PCB boards for these defects is to use an automatic visual inspection system. Automated inspection systems can detect defects in solder joints and capacitor polarity, for example.

One of the most common causes of board soldering defects is that the solder is not fully wetted. This can occur when the solder is applied too little heat or is left on the board too long. A board that is not properly wetted can lead to structural issues, and it will affect the overall performance of the PCB. However, there are several preventive measures that can be taken to improve board wetting.

Another reason for PCB board soldering defects is improper stencil design. When a stencil is improperly designed, it may cause the solder balls to not fully form. Using a proper stencil can prevent solder ball defects and ensure circuit performance.

Orsaker till att PCB-hartsmaterial spricker under BGA-pads vid SMTP-bearbetning

Orsaker till att PCB-hartsmaterial spricker under BGA-pads vid SMTP-bearbetning

Sprickbildning i PCB-hartsmaterial uppstår på grund av förekomsten av instängd fukt. Orsaken till detta är en hög lödtemperatur som resulterar i en ökning av ångtrycket. Sprickorna kan också uppstå på grund av att kortets termiska expansion gör att avståndet mellan BGA-padsen ändras. För att minska risken för den här typen av fel kan man använda alternativa ytbehandlingar, vilket minskar den termiska påverkan på intilliggande paket.

Innesluten fukt orsakar sprickor i kretskortets hartsmaterial

Innesluten fukt kan orsaka en rad olika fel på kretskortet, t.ex. delaminering, blåsor och metallmigration. Den kan också förändra dielektricitetskonstanten och avledningsfaktorn, vilket minskar kretsens omkopplingshastighet. Fukt ökar också stressnivåerna i olika PCB-funktioner, inklusive koppar- och bga-pads. Det kan också leda till oxidation på kopparytor, vilket minskar ytbehandlingarnas vätbarhet. Dessutom kan det öka förekomsten av elektriska kortslutningar och öppningar. Detta är särskilt problematiskt eftersom PCB-tillverkning innebär många steg som involverar användning av vatten.

Under smt-bearbetning kan instängd fukt leda till sprickor i PCB-hartsmaterialet. På grund av detta bör PCB-tillverkare vara uppmärksamma på storleken på lödmaskens öppning. Storleken bör vara mindre än det önskade markområdet. Om SMD:s padområde är för stort kommer det att bli svårt att leda lödkulan.

Reflow-lödningstemperaturer ökar ångtrycket

Olika faktorer kan påverka skevheten i paketet vid BGA-lödning. Bland dessa kan nämnas uppvärmning, skuggeffekter och starkt reflekterande ytor. Lyckligtvis kan återflödesprocesser med forcerad konvektion minska dessa effekter.

En hög återflödestemperatur kan leda till en försämring av lödpunkten. Temperaturökningen kan leda till en minskning av lödfogens höjd, vilket resulterar i ett lödavstånd som är mindre än den ursprungliga höjden på lödbulten.

Formen på fästplattan är också en viktig faktor för att bestämma lödfogens robusthet. Det rekommenderas att använda större, bredare elektroder än mindre. Den ökade ytan ökar risken för sprickbildning.

Klistrigt flöde minskar värmepåverkan på intilliggande paket

Tacky flux är ett värmehärdbart material som används vid montering av chip scale och flip chip-paket. Dess sammansättning består av reaktiva kemikalier som löses upp i underfill-materialet under återflödesuppvärmningen. Efter härdning blir tacky flux en del av nätverksstrukturen i det slutliga paketet.

Flussmedel är ett kemiskt vätmedel som underlättar lödningsprocessen genom att minska ytspänningen hos det smälta lodet, så att det kan flyta mer fritt. De kan appliceras genom doppning, tryckning eller stiftöverföring. I många fall är de kompatibla med epoxi underfill. Detta gör att de kan minska den termiska påverkan från intilliggande paket under smt-bearbetning.

Användning av klibbigt flussmedel minskar värmepåverkan på intilliggande paket under lödningen. Denna metod har dock sina begränsningar. Flera faktorer kan göra att flussmedlet inte fungerar. Föroreningar i flussmedlet kan störa lödningsprocessen och göra lödfogen svag. Dessutom krävs det dyrbar utrustning för att rengöra lödpastan ordentligt före lödning.

Alternativa ytbehandlingar

Sprickutbredningen på ett mönsterkort kan påverkas av vilka ytbehandlingar som används. Olika metoder har utvecklats för att lösa detta problem. En av dessa metoder är att använda ett organiskt konserveringsmedel för lödbarhet. Detta konserveringsmedel är effektivt mot padoxidation. Dessutom hjälper det till att bibehålla lödfogens kvalitet.

Padgeometrin bestämmer kortets styvhet. Den definierar också lödmaskens öppning. Kortets tjocklek och de material som används för att skapa varje lager påverkar kortets styvhet. I allmänhet är ett pad-till-enhet-förhållande på 1:1 optimalt.

Testmetoder för att karakterisera sprickbildning i kretskortsmaterial

Det finns olika testmetoder för att karakterisera prestanda hos PCB-hartsmaterial under SMTP-bearbetning. Dessa inkluderar elektrisk karakterisering, icke-destruktiva metoder och tester av fysiska egenskaper. I vissa fall kan en kombination av dessa tester användas för att upptäcka kraterbildning.

En testmetod för att identifiera sprickbildning är att mäta avståndet mellan stiften. Vanligtvis är 0,004 tum acceptabelt för periferipaket och 0,008 tum är acceptabelt för BGA-paket. En annan testmetod för att karakterisera PCB-hartsmaterial är att mäta värmeutvidgningskoefficienten. Denna koefficient uttrycks som ppm/grad Celsius.

En annan metod är flip chip-tekniken. Denna process möjliggör tillverkning av flip chip BGA-substrat med hög densitet. Den används ofta i avancerade IC-förpackningar. Flip chip-processen kräver högkvalitativa ytbehandlingar som är enhetliga och fria från föroreningar för lödbarhet. Detta uppnås vanligtvis genom elektrolös nickelplätering över kopparplattan och ett tunt lager av nedsänkt guld. Tjockleken på ENIG-skiktet beror på PCB-monteringens livslängd, men det är vanligtvis cirka 5 um för nickel och 0,05 um för guld.

Ökar impedansregleringslinjen kostnaden för kretskortet?

Ökar impedansregleringslinjen kostnaden för kretskortet?

Impedance control is an important feature that affects the performance of printed circuit boards. The manufacturer can control the impedance of a PCB board by adjusting the trace configuration and the dielectric constant of the PCB material. It is essential for board designers to convey their impedance requirements in advance.

Impedance control line reduces EMI issues

Using an impedance control line reduces EMI issues by reducing the current that can flow through a line. As we know, the higher the current, the higher the emissions. However, by using an impedance control line, you can significantly reduce the current to a level that will not cause problems with your equipment.

It increases cost

Adding an Impedance Control Line (ICL) to a PCB board can increase the cost of the board. This component is necessary for RF products and uses a multilayer FR-4 construction. The plated through holes on one layer link tracks on other layers. Alternatively, complex structures use buried and blind vias, which connect the inner layers only. The most expensive ICLs go through all layers of the board.

When specifying the impedance control line, remember to be as detailed as possible. If you don’t, the fabricator may have to make several round-trips with the design team to confirm a critical specification. This can waste valuable project time. By providing as much detail as possible, you can help to ensure a smooth and efficient project. Moreover, you must remember that only one trace width is allowed per PCB layer, so it is important to specify which figure you will use.

Impedance is a vital parameter of PCBs. This parameter ranges between 25 and 120 ohms on average. Generally, Impedance is a combination of inductance and capacitance, and is dependent on the frequency. In some digital applications, controlled impedance is necessary to maintain signal clarity and data integrity.

It affects quality

An impedance control line can affect the quality of a PCB board in a variety of ways. Unmatched impedance can cause reflections of signal waves, resulting in a signal that is not a pure square wave. This can cause electromagnetic interference and localized radiation, and can affect sensitive components. The proper impedance control line for a PCB design is essential for the reliability of the PCB.

For the best quality PCB, choose a manufacturer with an experienced team of designers and engineers. Make sure they follow quality standards and deliver your order on time. Generally, it is recommended to use a manufacturer with at least 10 years of experience. Some companies also offer services at cheaper rates.

Controlled impedance is essential for circuit boards with high-speed signals and high-power devices. Controlled impedance PCBs ensure that these devices perform as expected, consume less energy and last longer. When designing a PCB, it’s important to consider the impedance level of copper traces. If they aren’t matched, a single reflection pulse can disrupt a circuit and bleed over to neighboring components.