PCB Tasarım Riskini Azaltmak İçin Üç İpucu

PCB Tasarım Riskini Azaltmak İçin Üç İpucu

PCB tasarımı ile ilişkili riski azaltmanın birçok yolu vardır. Bunlardan bazıları, tüm bileşenlerin aynı yönde yönlendirilmesi ve katman geçişlerinde birden fazla vias kullanılmasıdır. Diğerleri arasında analog ve dijital devreleri ayrı tutmak ve osilasyon devrelerini ısıdan uzak tutmak yer alır.

Bileşenlerin aynı yönde yönlendirilmesi

PCB tasarım riski, bileşenlerin aynı yönde yönlendirilmesiyle en aza indirilir. Bu uygulama, montaj ve kullanım süresini en aza indirmeye yardımcı olur ve yeniden işleme ve maliyetleri azaltır. Bileşenlerin aynı yönde yönlendirilmesi, bir bileşenin test veya montaj sırasında 180 derece döndürülme olasılığını azaltmaya da yardımcı olur.

Bileşenlerin yönlendirilmesi ayak izi oluşturma ile başlar. Yanlış bir ayak izi, yanlış bağlanmış parçalara yol açabilir. Örneğin, bir diyot katodu bir yönü gösterecek şekilde yönlendirilirse, katot yanlış pime bağlanabilir. Ayrıca, çok pinli parçalar yanlış yönde monte edilebilir. Bu, parçaların pedler üzerinde yüzmesine veya ayağa kalkmasına neden olabilir, bu da tombstoning etkisine neden olur.

In older circuit boards, the majority of components were oriented in one direction. However, modern circuit boards must take into account signals that move at high speeds and are subject to power integrity concerns. In addition, thermal considerations must be addressed. As a result, layout teams must balance electrical performance and manufacturability.

Using multiple vias at layer transitions

While it is not possible to eliminate vias at layer transitions completely, it is possible to minimize the radiation from them by using stitching vias. These vias should be close to the signal vias to minimize the distance the signal travels. It is important to avoid coupling in these vias, as this compromises the integrity of the signal while in transit.

Another way to reduce PCB design risk is to use multiple vias at layer transitions. This reduces the number of pins on a PCB and improves mechanical strength. It also helps reduce parasitic capacitance, which is particularly important when dealing with high frequencies. Additionally, using multiple vias at layer transitions also allows you to use differential pairs and high-pin-count parts. However, it is important to keep the number of parallel signals low, in order to minimize signal coupling, crosstalk, and noise. It is also recommended to route noise signals separately on separate layers in order to reduce signal coupling.

Keeping heat away from oscillatory circuits

One of the most important things to keep in mind when designing a PCB is to keep the temperature as low as possible. Achieving this requires careful geometrical arrangement of components. It is also important to route high-current traces away from thermally sensitive components. The thickness of the copper traces also plays a role in PCB thermal design. The copper trace thickness should provide a low impedance path for current, as high resistance can cause significant power loss and heat generation.

Keeping heat away from oscillatory circuitry is a critical part of the PCB design process. For optimum performance, oscillator components should be placed near the center of the board, not near the edges. Components near the edges of the board tend to accumulate a lot of heat, and this can raise the local temperature. To reduce this risk, high-power components should be located in the center of the PCB. Furthermore, high-current traces should be routed away from the sensitive components, since they can cause the heat to accumulate.

Avoiding electrostatic discharge

Avoiding electrostatic discharge while designing PCBs is an essential aspect of electronic engineering. Electrostatic discharge can damage the precision semiconductor chips inside your circuit. It can also melt bonding wires and short-circuit PN junctions. Luckily, there are many technical methods to avoid this problem, including proper layout and layering. Most of these methods can be carried out with very little modification to your design.

First, you should understand how ESD works. In a nutshell, ESD causes a massive amount of current to flow. This current travels to the ground through the metal chassis of the device. In some cases, the current can follow multiple paths to the ground.

0 cevaplar

Cevapla

Tartışmaya katılmak ister misiniz?
Katkıda bulunmaktan çekinmeyin!

Bir cevap yazın

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir