Apa yang dimaksud dengan Solder Mask?

Apa yang dimaksud dengan Solder Mask?

In the electronic manufacturing industry, solder masks are used to help ensure a successful soldering process. These masks are commonly green in color, and their fine-tuned formulations allow manufacturers to maximize their performance. The masks must adhere to the PCB laminate to achieve optimum performance. Good adhesion allows masks to print narrow dams between tight SMD pads. Green solder masks also respond well to UV exposure, which helps cure them for optimal performance.

Process of applying solder mask to a circuit board

The process of applying solder mask to a circuit boards has many steps, including pretreatment, coating, drying, prebaking, registration, exposure, developing, final curing, and inspection. In addition, it can also involve screen printing. Depending on the process, soldermask thickness can vary.

A solder mask is a layer of solder that is applied to a circuit board before soldering. This layer protects copper traces from oxidation, corrosion, and dirt. While solder mask is often green in color, other colors can be applied as well. Red solder mask is usually reserved for prototyping boards.

The size of the solder mask is defined by the tolerance between it and the pads. Normally, it is half of the spacing between pads. However, it can be as small as 50um. This clearance must be accurate or else solder mask will become contaminated with tin.

Colors of solder mask vary from one manufacturer to another. The most common colors are red, blue, white, and black. A colored solder mask can make a PCB easier to identify. Clear solder masks can also be used to add a bit of personality to a board.

Types of solder masks

Solder masks can be made in several different types. The most common type is made of liquid epoxy, which is a thermosetting polymer. The epoxy hardens when exposed to heat, and the shrinkage post-hardening is very low. This type of solder mask is suited for a variety of applications. Another type is liquid photo imageable solder mask, which consists of a blend of polymers and solvents that are mixed only before application. This allows for a longer shelf life and more color choices for circuit boards.

Solder masks are placed on the copper layer to shield it from oxidation. They also protect the copper tracks on the PCB from forming a bound scaffold. These masks are essential for preventing solder bridges, which are unwanted electrical relations between transmitters. They are typically used with tie washing and reflow systems, and when connecting pieces.

The most common types of solder masks are photoimageable and liquid. The first two are more expensive. Photo imageable solder masks are printed onto the PCB using a special ink formulation. They are then exposed to UV light to dry. The next stage of the soldering process involves removing the mask with developers, which are water sprays directed at high pressure.

Solder masks are used in broadcast communications gear, media transmission gadgets, and PCs. These devices require a high level of reliability and trustworthiness. Flexible PCBs are also used in radio and television sets.

Colors of solder mask

Solder masks come in various colors, which make them easier to identify. The original color of a solder mask was green, but today there are many different colors available. These colors can be either glossy or matte. While green remains the most common color, others are also in high demand.

Solder masks are available in a variety of colors, from green to red. While many people prefer red to be more professional and bright, there are advantages and disadvantages to both options. Green is less irritating to the eyes and is the most widely used color among PCB manufacturers. It is also less expensive than other colors. However, red is not as good a contrast as green and is less ideal for inspection of the board traces.

Solder masks are available in different colors to meet the requirements of a wide range of products. Purple solder masks are particularly useful for submarine PCBs, as they provide excellent contrast between the two planes. However, this color is not ideal for displaying white silk printing or gold immersion surfaces. Purple masks are more expensive than other PCB colors and are typically used for a specific application.

Colors of solder masks can be white, red, or black. However, black solder masks tend to be more expensive and take longer to manufacture. Black solder masks also absorb heat and have the lowest contrast, which increases the chances of failure. In addition, black solder masks can discolor the silkscreen, so assemblers should use thermal-coupling or temperature sensors to monitor solder mask temperature.

PCB Keramik Vs PCB Inti Logam

PCB Keramik Vs PCB Inti Logam

PCB keramik lebih efisien secara termal daripada PCB logam. Ini berarti bahwa suhu pengoperasian PCB akan lebih rendah. PCB aluminium, di sisi lain, akan terkena lapisan dielektrik, sedangkan PCB keramik tidak. Selain itu, PCB keramik lebih tahan lama daripada PCB logam.

FR4 vs ceramic pcb

The main difference between FR4 PCB and ceramic PCB is their thermal conductivity performance. FR4 PCB is prone to high thermal conductivity while ceramic PCB is prone to low thermal conductivity. Ceramic PCBs are better for applications that need high thermal conductivity. However, they are more expensive.

FR4 PCB has some advantages over ceramic PCB, but is not a strong competitor to ceramic PCB. Ceramic PCBs have higher thermal conductivity, making it easier for heat to reach other components. They are also available in a variety of shapes and sizes.

The main advantage of ceramic PCBs is their low electrical conductivity and high thermal conductivity. Moreover, they are better insulators, making it easier for high-frequency circuits. In addition, ceramic PCBs are more resistant to corrosion and normal wear and tear. They can also be combined with a plasticizer or lubricant to create a flexible, reusable curtain. Another key advantage of ceramic PCBs is their high heat transmission capacity. This allows them to disperse heat across the entire PCB. By contrast, FR4 boards are largely dependent on cooling gadgets and metal structures to achieve the desired thermal conductivity.

Moreover, FR4 has a relatively low thermal conductivity. Compared to ceramic materials, FR4 is only a few times more conductive. For example, aluminum oxide and silicon carbide are 100 times more thermally conductive than FR4, while beryllium oxide and boron nitride have the highest thermal conductivity.

LTTC vs metal core pcb

A ceramic PCB, also known as a low-temperature-co-fired ceramic (LTTC) PCB, is a type of PCB that has been specially crafted for low temperatures. Its manufacturing process is different from that of a metal-core PCB. In the case of LTTC, the PCB is made of an adhesive substance, crystal glass, and gold paste, and it is fired at a temperature below 900 degrees Celsius in a gaseous oven.

Metal-core PCBs are also more efficient at dissipating heat, allowing them to be used for high-temperature applications. In order to do this, they use thermally-conductive dielectric materials, acting as a heat-wicking bridge to transfer heat from core to plate. However, if you are using an FR4 board, you will need to use a topical heat sink.

In addition to their superior heat dissipation and thermal expansion, metal core PCBs also feature higher power density, better electromagnetic shielding, and improved capacitive coupling. These benefits make them a better choice for electronic circuits that need to be cooled.

FR4

Thermal conductivity performance of ceramic PCBs is much higher than that of metal core PCBs, which may be a reason for their higher prices. Unlike metal core boards, ceramic PCBs don’t require via drilling and deposition to dissipate heat. The difference between these two types of boards lies in the type of solder mask used. Ceramic PCBs generally have dark colors, whereas metal core boards have an almost-white solder mask.

Ceramic PCBs have higher thermal conductivity than FR4, a material most commonly used for PCB mass production. However, FR4 materials have relatively low thermal conductivity, making them less suitable for applications requiring temperature cycling or high temperatures. Moreover, ceramic boards tend to expand faster once the substrate temperature reaches the glass transition temperature. Rogers materials, on the other hand, have high glass transition temperatures and stable volumetric expansion over a wide temperature range.

Metal core PCBs are made from aluminum or copper. They have a metal core instead of FR4 and a thin copper coating. This type of PCB can be used to cool multiple LEDs and is becoming more common in lighting applications. Metal core PCBs have certain design restrictions, but they are easier to manufacture.

Metal core PCBs have superior heat dissipation, dimensional stability, and electrical conductivity. They can also offer improved power density, electromagnetic shielding, and capacitive coupling. Compared to ceramic PCBs, metal core PCBs cost less. They are often used in communication electrical equipment and LED lighting.

Cara Menentukan Jumlah Lapisan pada PCB

Cara Menentukan Jumlah Lapisan pada PCB

Before deciding on the number of layers for a PCB, it is essential to identify the purpose for which the PCB will be used. This will affect the number of layers required, as will the complexity of the electronic circuit and the amount of power it will consume. Generally speaking, high-tech applications require a high number of layers.

Using the signal layer estimator

PCB layer count estimation is a crucial step in board manufacturing. The more layers a circuit board has, the more expensive it will be. More layers also require more production steps, materials, and time. Using the signal layer estimator will help you determine the right number of layers to use for your PCB. Then, you can adjust the board accordingly for an efficient design.

The signal layer is the first layer of a two-layer PCB stackup. The copper material used for layer one is 0.0014 inches thick. It weighs approximately one ounce. This layer’s effect will vary depending on the size of the boards.
Using the ground plane estimator

The number of layers required for a given design depends on the power levels and complexity of the circuits. More layers increase the cost of production, but they also allow for more tracks and components. Therefore, layer count estimation is an important step in the design process. Sierra Circuits has created a tool called the Signal Layer Estimator, which can help you determine the number of layers required for your PCBs.

PCB design is critical to the performance of your device. The design process must specify the number of layers for power, ground, routing, and special considerations. PCBs can have as many as four layers, and the signal layers must be close together. This arrangement reduces unwanted signals and keeps the opposition between currents and circuits within acceptable limits. The ideal range for this opposition is 50 to 60 ohms. Too low of an impedance and you could experience spikes in the drawn current. On the other hand, too high an impedance will generate more electromagnetic interference and expose the board to foreign interference.

Managing a good stackup

Managing a good stackup in PCBA design requires an understanding of the various demands on stackup. The three main demands are controlled impedance, crosstalk control, and interplane capacitance. Fabricators cannot account for the first two demands, because only the design engineer knows what they need.

The layers of a PCB must be stacked in such a way that they are compatible and can transmit signals. In addition, the layers must be coupled to each other. The signal layer must be adjacent to the power plane, mass plane, and ground plane. To achieve these objectives, the best mode is an 8-layer stackup, but you can customize this to suit the requirements of your design.

Good stackup can reduce crosstalk, which is energy that moves from one PCB trace to the next. There are two types of crosstalk: inductive and capacitive. Inductive crosstalk is dominated by return currents, which generate magnetic fields in the other traces.

Considering component keep-out or head-room restrictions

When determining the number of layers on your PCB, keep in mind any head-room or component keep-out restrictions that may apply. Head-room restrictions refer to areas on a board where the physical shape of the components are too close to the board or where the board is not large enough to accommodate a particular component. These are usually noted on the schematic. The type of components on the board and the overall layout will determine the number of layers.

Calculating microstrip and stripline impedance for high-speed signals

Using the same mathematical formula, we can calculate the impedance of both striplines and microstrips for high-speed signals. Unlike a stripline, a microstrip’s characteristic impedance is dependent on the width of its trace, not its height. As a result, the higher the frequency, the higher the microstrip’s characteristic impedance.

In circuit design, controlled-impedance lines are most often set up in a microstrip configuration. The edged-coupled microstrip configuration uses a differential pair on an external layer of the circuit board with a reference plane adjacent. The Embedded microstrip, on the other hand, utilizes additional dielectric materials such as Soldermask. In addition to this, stripline routing is commonly symmetrical.

The values of impedance are not always accurate because the circuits are influenced by a variety of factors and parameters. Incorrectly calculated values can lead to PCB design errors and can interfere with the operation of the circuit. In order to avoid such a situation, use an impedance calculator. It is a powerful tool to tackle impedance problems and to get accurate results.

Perbedaan Antara FPGA dan CPLD

Perbedaan Antara FPGA dan CPLD

Dua jenis chip logika yang dapat diprogram adalah Field Programmable Gate Array (FPGA) dan Complex Programmable Logic Device (CPLD). Yang pertama adalah perangkat "butiran halus", sedangkan yang kedua didasarkan pada blok yang lebih besar. Kedua jenis ini memiliki kekuatan dan kelemahan yang berbeda. Sementara FPGA lebih baik untuk aplikasi sederhana, CPLD ideal untuk algoritma yang kompleks.

CPLD adalah perangkat ASIC yang dapat diprogram

CPLD adalah perangkat IC yang dapat diprogram yang terdiri dari sebuah macrocell. Macrocell berisi array AND dan flip-flop, yang melengkapi fungsi logika kombinasional. Larik AND menghasilkan istilah produk, yang merupakan output dari CPLD. Nomor istilah produk juga merupakan indikasi kapasitas CPLD. Demikian pula, larik AND-OR memiliki sekering yang dapat diprogram pada setiap persimpangan.

CPLD dapat diprogram menggunakan bahasa deskripsi perangkat keras. Bahasa ini dapat digunakan untuk menulis dan menguji perangkat lunak. Sebagai contoh, seorang insinyur dapat menulis bahasa deskripsi perangkat keras (HDL) untuk CPLD, yang dapat dibaca oleh CPLD. Kode tersebut kemudian diunduh ke dalam chip. Chip CPLD kemudian diuji untuk memastikan bahwa chip tersebut berfungsi, dan bug apa pun dapat diperbaiki dengan merevisi diagram skematik atau bahasa deskripsi perangkat keras. Akhirnya, prototipe dapat dikirim ke produksi.

CPLD lebih cocok untuk algoritme

CPLD adalah sirkuit terpadu berskala besar yang dapat dirancang untuk mengimplementasikan sejumlah besar algoritme yang kompleks. CPLD menggunakan kombinasi teknologi pemrograman CMOS EPROM dan EEPROM dan dicirikan oleh densitasnya yang tinggi dan konsumsi daya yang rendah. Arsitektur densitas tinggi mereka memungkinkan mereka untuk mencapai kecepatan yang sangat tinggi dan operasi densitas tinggi. CPLD juga sangat kompleks, dengan sejumlah besar komponen internal.

CPLD juga lebih cepat dan lebih dapat diprediksi daripada FPGA. Karena dikonfigurasi menggunakan memori hanya baca yang dapat diprogram yang dapat dihapus secara elektrik (EEPROM), CPLD dapat dikonfigurasi di dalam chip saat sistem dinyalakan, tidak seperti FPGA yang membutuhkan memori non-volatile eksternal untuk memberi makan bitstream. Hal ini membuat CPLD lebih cocok untuk algoritma daripada FPGA untuk banyak aplikasi.

CPLD lebih aman

Ada beberapa perbedaan utama antara FPGA dan CPLD. FPGA terdiri dari logika yang dapat diprogram, sedangkan CPLD menggunakan struktur yang lebih fleksibel. CPLD memiliki lebih sedikit fitur yang dapat diprogram, tetapi masih lebih mudah untuk diprogram. CPLD sering kali dibuat sebagai chip tunggal dengan sejumlah makrosel. Setiap makrosel memiliki pin output yang sesuai.

Perbedaan signifikan pertama antara kedua jenis chip ini adalah cara menghasilkan clock. CPLD dapat menggunakan satu sumber clock eksternal atau sejumlah chip penghasil clock yang unik. Clock ini memiliki hubungan fase yang jelas dan dapat digunakan untuk meningkatkan kinerja pemrograman chip. CPLD dapat diprogram dengan beberapa cara, dan desainnya dapat diubah beberapa kali jika perlu.

CPLD juga memiliki biaya kepemilikan yang lebih rendah secara keseluruhan. Faktor ini membuatnya lebih murah untuk diproduksi. CPLD dapat digunakan untuk berbagai aplikasi. Misalnya, CPLD dapat berisi banyak komponen diskrit, tetapi juga dapat berisi beberapa elemen logika yang dapat diprogram. Ini meningkatkan fleksibilitas.

CPLD lebih murah

CPLD lebih hemat biaya daripada FPGA, meskipun FPGA memiliki keterbatasan tertentu. Karena ukuran CPLD yang lebih kecil, sirkuitnya tidak terlalu deterministik, yang dapat mempersulit skenario pengaturan waktu. Namun demikian, ada sejumlah keuntungan yang terkait dengan FPGA, termasuk fleksibilitas dan keamanan yang lebih besar.

CPLD dapat diprogram menggunakan memori hanya-baca yang dapat diprogram yang dapat dihapus secara elektrik, tidak seperti FPGA, yang mengandalkan memori akses acak statis. Akibatnya, CPLD dapat mengkonfigurasi diri mereka sendiri selama boot-up sistem, sedangkan FPGA harus dikonfigurasi ulang dari memori non-volatile eksternal. CPLD juga lebih hemat daya dan hemat panas daripada FPGA.

CPLD terdiri dari sel makro logika yang dapat diprogram yang kompleks yang dihubungkan bersama dengan matriks interkoneksi. Matriks ini dapat dikonfigurasi ulang dan dapat mendukung desain logika berkecepatan tinggi berskala besar. Penggunaan umum untuk CPLD adalah sebagai memori konfigurasi untuk FPGA, seperti bootloader sistem. CPLD memiliki memori yang tidak mudah menguap, sementara FPGA menggunakan memori eksternal untuk memuat konfigurasi.

CPLD lebih cocok untuk logika pengaturan waktu

CPLD adalah sirkuit terpadu yang dapat melakukan banyak tugas. Fleksibilitas dan kemampuan pemrogramannya ditingkatkan dengan arsitektur Logic Doubling, yang memungkinkan fungsi kait ganda per microcell. Teknologi ini memungkinkan perangkat yang lebih kecil dengan ruang yang cukup untuk revisi. CPLD dapat melakukan lebih banyak fungsi daripada CMOS tradisional, termasuk beberapa umpan balik independen, beberapa sumber daya perutean, dan pengaktifan output individual.

CPLD lebih fleksibel daripada logika konvensional, karena tidak memerlukan memori konfigurasi eksternal. Tidak seperti FPGA, CPLD menggunakan EEPROM, memori non-volatile yang mempertahankan konfigurasi bahkan ketika sistem dimatikan.