Merekomendasikan 4 Perangkat Lunak Desain PCB Gratis

Merekomendasikan 4 Perangkat Lunak Desain PCB Gratis

Jika Anda baru mengenal desain PCB, Anda mungkin tertarik untuk mempelajari cara menggunakan perangkat lunak desain PCB gratis. Ada beberapa pilihan berbeda yang tersedia untuk Anda, termasuk Altium CircuitMaker yang populer, EasyEDA, PCB123, dan ZenitPCB. Semua perangkat lunak ini cocok untuk sebagian besar desainer pemula, dan sangat mudah dipelajari dan digunakan.

EasyEDA

EasyEDA adalah salah satu perangkat lunak desain PCB paling populer yang tersedia secara online gratis. Perangkat lunak ini digunakan oleh lebih dari dua juta orang, termasuk pembuat, insinyur elektronik, pelajar, dan pendidik. Antarmukanya yang ramah pengguna membuatnya mudah digunakan dan dipahami. Ada juga kursus dan tutorial yang tersedia untuk membantu Anda mempelajari cara menggunakan perangkat lunak ini.

EasyEDA menawarkan fitur-fitur canggih termasuk pengambilan skematik, simulasi, tata letak PCB, dan visualisasi 3D. Software ini bekerja di cloud dan memiliki pustaka komponen PCB yang ekstensif. Ini memungkinkan Anda untuk menyimpan dan membagikan pekerjaan Anda secara pribadi dan dengan mudah berkolaborasi dengan pengguna lain. EasyEDA juga mendukung file skematik Altium, KiCad, dan LTspice. Perangkat lunak ini juga menyertakan layanan realisasi PCB gratis.

ZenitPCB

Apakah Anda seorang perancang elektronik pemula atau hanya mencari alat gratis untuk mendesain papan sirkuit, Anda memiliki banyak pilihan dalam hal perangkat lunak desain PCB. Untungnya, ada beberapa perangkat lunak desain PCB gratis terkemuka yang dapat melakukan pekerjaan tingkat profesional. Perangkat lunak desain PCB ini mudah digunakan dan akan memberikan hasil yang kompeten.

ZenitPCB menawarkan antarmuka yang bersih dan mudah dengan ruang kerja utama di bagian tengah. Tombol cepat dan tombol aplikasi memungkinkan Anda menavigasi di antara berbagai alat dan fungsi. Antarmuka ini juga dilengkapi dengan pustaka komponen yang mudah dinavigasi, daftar bersih yang tersedia, dan pintasan untuk operasi yang berbeda. Terdapat tombol GerberView yang dapat membantu Anda melihat dan mencetak skema dan skema elektronik lainnya.

PCB123

Apakah Anda seorang insinyur yang baru mengenal desain PCB atau seorang profesional berpengalaman, Anda selalu dapat meminta bantuan PCB123. Panduan penggunanya memandu Anda melalui dasar-dasar dan menjelaskan bagaimana fungsi perangkat lunak. Ini juga memberikan tip dan trik berguna tentang praktik terbaik untuk diikuti saat mendesain PCB Anda. Dan ia memiliki tampilan 3D dari desain Anda untuk membantu Anda memvisualisasikan semua komponen.

PCB123 adalah alat EDA berfitur lengkap yang berfokus pada desain sirkuit cepat. Rangkaian alat EDA-nya mencakup sistem manajemen BOM, pemeriksaan aturan desain waktu nyata, dan perpustakaan suku cadang online yang besar dengan lebih dari 750.000 suku cadang yang telah ditentukan sebelumnya. Perangkat lunak ini juga menyertakan tampilan rendering 3D untuk membantu Anda memvisualisasikan dan memeriksa komponen dan tata letak papan.

Pulsonix

Perangkat lunak desain PCB Pulsonix menawarkan berbagai fitur desain dan teknologi canggih. Perangkat lunak desain PCB ini mendukung mode penempatan dan perutean komponen, serta kemampuan pemrosesan pasca yang canggih. Perangkat lunak ini juga memiliki filter impor terbesar di industri, sehingga Anda dapat mempertahankan Kekayaan Intelektual (IP). Fitur lain dari Pulsonix termasuk varian perakitan lengkap, perutean push-aside interaktif, desain yang digerakkan oleh batasan, dan desain berbasis aturan. Perusahaan ini memiliki saluran penjualan di seluruh dunia.

Antarmuka yang mudah digunakan dari perangkat lunak desain PCB Pulsonix memfasilitasi pembuatan gambar skematik yang mudah dan cepat. Ini juga memfasilitasi penggunaan kembali elemen sirkuit. Selain itu, ia menawarkan pemeriksaan aturan kelistrikan otomatis. Terakhir, ini memungkinkan pengguna untuk mengimpor dan mengekspor data, memastikan keakuratan dalam desain.

Perbedaan Antara Perakitan Papan Fleksibel Kaku dan Perakitan Sistem Multi Pelat

Perbedaan Antara Perakitan Papan Fleksibel Kaku dan Perakitan Sistem Multi Pelat

Salah satu perbedaan antara PCB fleksibel kaku dan perakitan sistem multi-pelat adalah bahan yang digunakan untuk substrat. Pada PCB fleksibel kaku, bahan substrat biasanya berupa anyaman fiberglass atau resin epoksi. Namun, bahan-bahan ini tidak dapat diandalkan seperti polimida.

Pengaku

Ketika membangun sistem multi pelat dengan papan fleksibel yang kaku, penempatan pengaku adalah bagian penting dari proses perakitan. Komponen-komponen ini sering kali diaplikasikan dengan menggunakan perekat yang peka terhadap tekanan atau perekat yang diatur secara termal. Yang pertama lebih murah, tetapi membutuhkan PCB fleksibel untuk ditempatkan kembali di mesin laminasi, di mana ia akan dipotong sesuai bentuk pengaku yang diinginkan.

Ketika memilih papan fleksibel yang kaku, pastikan untuk mempertimbangkan dengan cermat jumlah tikungan dan di mana pengaku akan diterapkan. Jenis tikungan juga merupakan pertimbangan penting. Misalnya, Anda dapat menggunakan ikatan statis atau ikatan dinamis, dan salah satu jenisnya lebih tahan lama dan fleksibel.

Pilihan lainnya adalah sambungan elemen pelat tersegmentasi, yang terdiri dari beberapa elemen pelat yang dihubungkan dengan pin dan pegas rotasi. Jenis sambungan ini memungkinkan kekakuan lentur yang wajar, tetapi bisa jadi membosankan untuk dibuat.

PCB fleksibel

Apakah Anda seorang desainer atau produsen, Anda mungkin sudah tahu bahwa PCB fleksibel adalah komponen elektronik yang umum. Papan sirkuit sangat penting untuk berbagai jenis perangkat, dan sekarang ini, papan sirkuit lebih fleksibel daripada sebelumnya. Komponen papan ini sama dengan yang ditemukan pada PCB kaku, tetapi papan dapat dibengkokkan ke bentuk yang diinginkan selama aplikasi. PCB fleksibel biasanya terdiri dari satu lapisan film polimida fleksibel, yang kemudian ditutupi dengan lapisan tipis tembaga. Lapisan tembaga ini adalah lapisan konduktif, dan hanya dapat diakses dari satu sisi.

PCB fleksibel juga didesain secara berbeda dari PCB tradisional. Fleksibilitas papan ini merupakan suatu keuntungan, tetapi proses perakitannya lebih rumit. Bentuk papan fleksibel bisa jadi terlalu rumit untuk satu kali perakitan, atau dapat mengakibatkan kegagalan. Ini berarti bahwa desainer PCB perlu melakukan tindakan pencegahan khusus saat mendesain papan ini.

Konektor tepi kartu

Konektor tepi kartu adalah pilihan yang sangat baik untuk interkoneksi rakitan papan fleksibel multi-pelat dan kaku. Konektor ini memiliki serangkaian kemampuan yang membantu memenuhi berbagai macam kebutuhan sinyal. Misalnya, konektor ini dapat menangani sinyal impedansi tingkat rendah dan terkontrol, sinyal kecepatan tinggi, dan bahkan persyaratan pembawa arus yang lebih tinggi. Selain itu, keserbagunaannya memungkinkan mereka untuk masuk ke dalam berbagai penutup. Jenis konektor ini juga lebih hemat biaya daripada banyak jenis konektor lainnya, berkat titik interkoneksi yang lebih rendah dan desain penguncian / gaya retensi yang tinggi.

Konektor tepi kartu dapat dibentuk dalam berbagai bentuk, termasuk tepi yang membulat dan memancar. Tepi ini biasanya dibentuk menggunakan router atau alat pembentuk yang setara. Selain itu, sirkuit tercetak biasanya dibuat dari polimida (tebal 1 atau 2 mil), yang dibuat dalam bentuk lembaran datar. Sirkuit tembaga kemudian ditempelkan pada lembaran polimida menggunakan teknik litografi foto standar.

Konektor tepi kartu dapat dilapisi emas atau nikel. Selain timah, konektor ini dapat dilapisi nikel atau emas. Logam berlapis biasanya berlapis nikel atau emas untuk memberikan permukaan yang baik untuk sirkuit tembaga.

Biaya perakitan

Biaya rakitan papan fleksibel kaku dan rakitan sistem multi-pelat bervariasi tergantung pada jumlah papan dan komponen yang diperlukan. PCB fleksibel kaku adalah alternatif yang sangat baik untuk memanfaatkan kawat. PCB fleksibel ini terbuat dari beberapa lapisan dengan isolator tembaga yang dihubungkan dengan vias atau dilapisi melalui lubang. Papan ini memiliki biaya rendah dan keandalan tinggi dan merupakan pilihan umum untuk penggantian kabel harness.

Biaya perakitan PCB fleksibel kaku dan sistem multi-pelat mungkin lebih mahal daripada metode perakitan PCB tradisional, tetapi biaya produksi secara keseluruhan lebih rendah. Dengan menghilangkan kebutuhan akan konektor papan-ke-papan, PCB fleksibel yang kaku dan sistem multi-pelat menghemat ruang dan biaya produksi.

PCB fleksibel yang kaku dilapisi dengan bahan pelindung untuk mencegah kerusakan akibat panas dan bahan kimia. Bahan-bahan ini tersedia secara luas dan tidak mahal. Bahan ini juga merupakan isolator yang sangat baik dan tahan terhadap api. PCB fleksibel kaku juga digunakan pada motherboard komputer dan dalam mentransmisikan informasi.

Jembatan Solder Penyebab dan Solusi Penyolderan Gelombang

Jembatan Solder Penyebab dan Solusi Penyolderan Gelombang

Dalam proses penyolderan komponen, masalah yang disebut jembatan Solider dari penyolderan gelombang dapat terjadi. Masalah ini dapat disebabkan oleh berbagai faktor. Berikut adalah beberapa penyebab dan solusinya. Di bawah ini adalah tiga kemungkinan penyebab masalah ini. Alasan pertama adalah akibat penyolderan yang tidak tepat.

Jembatan penyolderan gelombang yang kokoh

Jembatan penyolder dibuat dengan menyambungkan dua kabel yang disolder. Tidak seperti penyolderan tradisional, penyolderan gelombang menggunakan penghalang elastis untuk memisahkan kabel dari solder. Penghalang ini melindungi solder dari oksidasi dan membantu mempertahankan tegangan permukaan solder yang tinggi.

Penyolderan gelombang menawarkan akurasi yang lebih baik daripada pengelasan manual, tetapi juga memiliki kelemahan tertentu. Suhu pengeringan tinggi, dan kualitas perekatnya bisa buruk. Penyolderan gelombang juga dapat menyebabkan permukaan PCB kotor, terutama pada PCB yang besar dan tidak rata. Solder juga dapat terlepas dari PCB karena kandungan fluks yang tinggi atau suhu pemanasan awal yang ekstrem.

Penyolderan gelombang juga dapat mengakibatkan jembatan solder antara komponen SOD yang berdekatan. Jembatan solder adalah cacat yang serius karena dapat menyebabkan korsleting listrik. Masalah lainnya adalah efek batu nisan, di mana komponen terangkat selama penyolderan gelombang. Hal ini sering kali terjadi akibat penggunaan komponen dengan persyaratan kemampuan solder yang berbeda atau penggunaan panjang timah yang salah.

Masalah

Jembatan solider dapat terjadi ketika solder diterapkan di bantalan terakhir dari sambungan yang disolder. Hal ini dapat terjadi dalam beberapa cara yang berbeda. Seringkali pencuri solder terletak berdekatan dengan set bantalan terakhir, atau dalam busur solder. Untungnya, ada beberapa cara untuk mencegah jembatan solder.

Solder bridging adalah cacat penyolderan umum yang dapat menyebabkan korsleting listrik. Pada penyolderan gelombang, solder dapat mengalir di antara dua konektor, yang dapat menyebabkan masalah ini. Panjang timah yang salah dan menggunakan persyaratan kemampuan solder yang berbeda adalah dua penyebab umum jembatan solder.

Penyebab umum lainnya dari jembatan solider yang terjatuh dari gelombang adalah suhu pot solder yang tidak tepat. Jika suhu pot solder terlalu tinggi, jembatan solider akan putus. Beberapa faktor dapat memengaruhi masalah ini, termasuk jenis dan kuantitas fluks, serta sudut di mana komponen dilintasi gelombang.

Penyebab

Jembatan penyolderan gelombang yang tidak kokoh dapat disebabkan oleh beberapa faktor. Pertama, suhu pemanasan awal yang rendah dapat gagal mengaktifkan fluks. Dalam kasus seperti ini, kelebihan solder sering kali ditarik kembali ke gelombang. Selain itu, sejumlah kecil kelebihan solder dapat membuat jembatan.

Kedua, pencuri solder bisa menjadi penyebab jembatan solder. Secara umum, fenomena ini terjadi pada koneksi lubang tembus dengan komponen yang berjarak kurang dari 100 mil. Pencuri solder bisa sangat berguna dalam kasus ini, meskipun tidak diperlukan dalam semua kasus. Jika Anda tidak ingin menggunakan pencuri solder, pilihlah komponen dengan jarak pusat-ke-pusat yang lebih besar. Hal ini akan meminimalkan kemungkinan terjadinya jembatan solder.

Penyebab lain jembatan solder adalah permukaan komponen yang teroksidasi. Permukaan komponen yang teroksidasi akan mempersulit solder untuk merekat padanya. Hal ini disebabkan oleh fakta bahwa tegangan permukaan menyebabkan solder menolak permukaan yang teroksidasi.

Solusi

Aliran solder bukanlah aliran yang kontinu. Solder disebarkan ke seluruh papan, membentuk gelombang tipis yang mencapai bagian bawah PCB. Penyekat depan dan belakang dibuat melengkung sehingga gelombangnya rata. Bagian bawah gelombang terletak sedikit di atas penyekat depan, sedangkan bagian atas tepat di atas penyekat belakang. Tegangan permukaan gelombang mencegah solder mengalir melewati penyekat belakang.

Jika solder diaplikasikan ke papan tanpa oksigen yang cukup, maka akan turun ke kondisi gelombang. Hal ini akan menyulitkan untuk melihat solder di dalam papan, tetapi tetap akan membuat sambungan listrik. Satu solusi untuk masalah ini yaitu, menambah jumlah kabel pada papan. Atau, Anda bisa mengubah desain stensil untuk mencegah pencetakan pasta solder di luar kontak.

Penyolderan gelombang bisa membingungkan. Hal ini sudah ada bahkan sebelum kebanyakan orang dilahirkan. Terlepas dari fakta ini, banyak orang merasa sulit untuk memahami dan mengendalikannya. Untungnya, sekarang ada metode otomatis untuk penyolderan massal.

Apa Saja Faktor Umum yang Menyebabkan Kegagalan Papan Sirkuit PCB?

Apa Saja Faktor Umum yang Menyebabkan Kegagalan Papan Sirkuit PCB?

PCB circuit boards can fail for a variety of reasons. These include manufacturing defects, human error, and plating violations. While these reasons can’t be eliminated completely, they can be addressed during the design phase or during the CM’s inspection of the board.

Human error

Printed circuit boards (PCBs) are an integral part of any electronics product, so understanding why they fail is important. Many failure issues can be resolved through rework, but there are some situations where new PCB assembly is necessary. If you are faced with such an issue, partnering with an experienced PCB assembly company can help mitigate the chances of a costly, unsuccessful repair.

The process of manufacturing printed circuit boards is extremely complex. Even small mistakes and errors can affect the final product. Besides human error, other common factors that cause PCB circuit board failure include improper soldering and improper component installation. In addition, environment can affect the components. Therefore, the factory environment needs to be clean to avoid failure.

PCB circuit board failure can also be caused by physical damage. This can be the result of shock or pressure. For example, the device might have been dropped a long distance, smacked by an object, or disassembled with improper care. A faulty board may not be able to withstand these types of stresses.

Manufacturing problems

PCB circuit boards can fail for several reasons, including manufacturing problems. While some are easy to detect and fix, others require extensive repair by the contract manufacturer. Some common causes of PCB failures include poorly connected solder joints or misaligned pads. Additionally, improperly placed components or traces can affect PCB performance, and the presence of corrosive chemicals can damage the components.

PCB circuit board failures can also occur during assembly. Several factors can affect the quality of PCBs, including the humidity and temperature in the manufacturing environment. These factors must be controlled, so that the boards will perform as intended. Another possible cause of PCB failure is human error. Some people accidentally remove or bend components, leaving them in an unsuitable position.

A defect in the design of a PCB is the most common cause of board failure. Incorrect or faulty components may cause a short circuit, crossed signals, and other problems. In addition, improperly installed components may result in the board being charred. Other common problems related to PCB fabrication include insufficient thickness of the board, which results in bending or delamination. Improper insulation can also cause a voltage arc, which can cause the board to burn or short out. Poor connectivity between layers can also lead to poor performance.

Misplaced solders

A PCB circuit board can fail for many reasons. One of these factors is misplaced solders, which can lead to a short circuit or other problems. Another common cause is a scratched lamination. This can expose connections underneath the lamination.

During the manufacturing process, PCB components can be misplaced due to two factors. First, the component feeder may not be placed correctly, or it may not be fitted to the correct reel. Secondly, the PCB’s footprint may not be the same size, so a component that’s larger than it should be is likely to fail.

Another common factor that causes PCB circuit board failure is improper soldering. When soldering, solder residues can damage the panel. As a result, boards can develop conductive anodic filaments (CAFs), which are metal filaments that form on the exposed surface. This problem can also be caused by poor glass-resin bonding or PCB drilling damage. Additionally, thermal expansion differences weaken the bond after soldering. This can result in a faulty connection.

Violations in the plating

Violations in the plating process are one of the most common reasons for PCB circuit board failure. These imperfections in the coating process can interfere with other process materials, hindering the cure of the coating, and causing corrosive residues on the PCBs. These corrosive residues can lead to PCB failures and erratic behavior. The best way to prevent this problem is to follow design specifications. Also, using a conformal coating can prevent the boards from becoming contaminated while in operation.

A PCB circuit board can be very critical to the integrity of your electronics, but it’s also easy to overlook it when it’s being assembled. PCB failure can be caused by several factors, including faulty components or manufacturing mistakes. Violations in the plating can affect the board’s durability and reliability, and they can even compromise the safety of sensitive equipment.

Violations in the plating process can also cause a PCB to malfunction due to poor electrical conduction. As a result, the PCB may fail during testing or inspection. In some cases, the PCB may even become unusable due to improper hole cleaning and drilling.

PCB Design Strategies For Parallel Micro Strip Lines Based on Simulation Results

PCB Design Strategies For Parallel Micro Strip Lines Based on Simulation Results

Several PCB design strategies for parallel micro strip lines are presented in this paper. The first one deals with dielectric constant, Loss tangent, and Coplanar microstrip routing. The second one discusses application-specific PCB trace design rules.

Konstanta dielektrik

The dielectric constant of parallel micro strip lines can be computed by solving a series of differential equations. The dielectric constant h varies as a function of the substrate height and width. The dielectric constant is an important property of thin films, so it is important to obtain an accurate value for the dielectric constant.

A simulation can be used to compute the dielectric constant. The simulation results can be compared to experimental measurements. However, these results are not perfect. Inaccuracies can lead to inaccurate Dk values. This results in a lower impedance and a slower transmission rate. In addition, the transmission delay for a short line is longer than for long lines.

Parallel micro strip lines are characterized by a dielectric substrate with a relative dielectric constant of 2.2 and a corresponding dielectric loss of 0.0009. A microstrip line contains two parallel microstrip lines with a coupling line. The inner side of the microstrip line is loaded with a CSRR structure. The SRR transfers the electric field to the four sides of the microstrip line by means of the coupling line.

Loss tangent

To calculate the loss tangent of parallel micro strip lines, we use a computer simulation model. We use the loss tangent for a 30 mm-long strip line. Then, we use the length of the additional strip line to satisfy the connector spacing. This results in a loss tangent of 0.0007 deg.

The simulation results were very accurate and showed a good agreement with the experimental results. The simulation results indicated that the loss tangent of a parallel micro strip line is between 0.05 mm. This result was verified by further calculations. The loss tangent is an estimation of the energy absorbed by the strip. It depends on the resonant frequency.

Using this model, we can calculate the resonant frequency, loss tangent, and shunt frequency. We can also determine the critical cover height of a microstrip. This is a value that minimizes the influence of cover height on the line parameters. The computed output parameters are listed in the Line Types section of the guide. The program is very easy to use, allowing you to modify input parameters quickly and accurately. It has cursor controls, tuning shortcuts, and hot-keys to assist you in changing the parameters of the simulation model.

Coplanar microstrip routing

Coplanar microstrip routing can be performed using a computer simulation tool. The simulation can be used to optimize a design or to check for errors. For example, a simulation can determine whether a solder mask was present or not. Also, it can show the impact of etchback, which reduces coupling between coplanar trace and ground plane and increases impedance.

In order to make the correct coplanar microstrip routing, one must first compute the characteristic impedance between the coplanar waveguide and ground. This can be done with an active calculator or using the equations at the bottom of the page. The Transmission Line Design Handbook recommends a track width of “a” plus the number of gaps, “b.” The component side ground should be wider than b to avoid the effects of EMI.

To get accurate simulation results, one should use a good coplanar waveguide calculator. The best ones include a coplanar waveguide calculator that accounts for dispersion. This factor determines the loss and speed of different frequencies. Furthermore, one must account for copper roughness, which adds to the interconnect impedance. The best calculator will account for all these factors simultaneously.

Application-specific PCB trace design rules

The electrical field pattern on a PCB can be designed on multiple layers, single, double, or multi-layered. This type of PCB design is becoming more common, especially for SoC applications. In this design, the signal trace is routed on the inner layers of the PCB. The signal trace is backed by ground planes to minimize the characteristic impedance.

The simulated microstrip lines are designed with different cut-out widths. The reference 50 O microstrip has no cut-out compensation, while the other two have a discontinuity. The width-varying cut-out is used for impedance compensation, and the cut-out width is varied through linear parametric analysis. The cut-out width is 0.674 to 2.022 mm with a precision of 0.1685 mm.

The high integration requirements of parallel microstrip lines are often accompanied by crosstalk. To combat this problem, researchers have been exploring techniques to minimize crosstalk. They have studied the formation principles of crosstalk and identified factors that affect it. One of the most effective methods is to increase the spacing between transmission lines. However, this method uses limited wiring space and is not compatible with the direction of integration.

High Tg Printed Circuit Board and Its Applications

High Tg Printed Circuit Board and Its Applications

High Tg printed circuit boards have a number of applications in aerospace. For example, jet engines produce thousands of micro vibrations per minute and require high Tg capabilities. Similarly, aircraft need to operate at temperatures ranging from -45degC to 85degC. In such environments, high Tg PCBs must be moisture-free and able to withstand a wide range of temperature.

TG170

TG170 high-tg PCB is a high-temperature-grade, high-resistance printed circuit board that can be fabricated in two different ways, using different materials. Its properties depend on the specifics of your design. This high-tg PCB is suitable for various electronic applications, including digital devices, medical equipment, and RF circuits.

High-TG PCBs are widely used in the automotive industry, and in measuring and power equipment. They are also used in solar power cogeneration equipment and in power inverters. They are also used in the automotive electronics industry, including navigation, telematics, and audio-video equipment.

Another application of TG170 high-tg PCB is in engine controls, where high temperature is an issue. High rotational speeds and long operating hours can result in high temperatures. In such conditions, tg170 high-tg PCB can withstand high temperatures and help reduce PCB failures.

High-TG PCBs have a lower sensitivity to heat, humidity, and chemical corrosion, which make them more reliable for electronics applications. Moreover, they are more suited for lead-free tin spraying processes. As the Tg is a crucial factor for a PCB’s mechanical stability, it is important to consider it in the design process. High-TG PCBs must be designed with appropriate materials that can withstand a high-temperature environment.

TG170 high-tg PCB is the ideal choice for high-performance electronics. These PCBs are a great option for high-end manufacturers. They can be used in a variety of applications and are available in a wide variety of materials and finishes.

High-TG PCBs are used in industrial applications where high-temperature, electrical, and chemical environments are a requirement. They are used in high-power pressers, drilling machines, power inverters, solar power equipment, and high-processing antennas. High-temperature PCBs can be made from a variety of materials, including glass, paper, or ceramics.

High-temperature circuit boards are required by the RoHS standard and are often used in electronics. High-temperature PCBs are ideal for RoHS applications as they can support lead-free soldering. They also improve the stability of PCB boards at moderate operating temperatures. In addition, high-temperature circuit boards are cheaper.

TG170 FR-4

In the design of printed circuit boards, temperature is one of the most important considerations. As the temperature of the PCB increases, the material expands and its properties change. This is why it is recommended that TG170 FR-4 PCB be used for systems that are not exposed to temperatures above 170 degrees Celsius.

High temperatures can affect FR4 materials and are detrimental to printed circuit boards. For example, high temperatures can affect crosslinking, which is crucial for FR4 materials. High temperatures can also impact segmental mobility and even cause the material to transition to a liquid state.

Proper documentation of the stacking-up plan is essential for successful high-TG PCB fabrication. The PCB manufacturer can help you develop the best layout for your circuits by providing the necessary specifications. Depending on your needs, you can choose FR-4, Rodgers, or Nelco materials. You can also route high-frequency signals to the inner layers to help insulate them from external radiation.

High-quality materials have longer life spans and improve performance. Therefore, you must look for PCBs with quality certifications. Major quality certifications include RoHS, ANSI/AHRI, ISO, and CE.

PCBs manufactured with TG170 FR-4 high-TG material are popular in many industries. The material’s higher Tg value improves moisture, heat, chemical resistance, and board stability. These properties make high-TG PCBs ideal for high-temperature circuits.

The properties of TG170 FR-4 high-TG PCB depend on the type of base material. Different weights of copper can be used in making a high-TG PCB. Because of this, different layers must be labeled separately. These layers will be separated according to their weight and thickness. This process helps in determining the proper thickness of high-TG PCB.

High-TG materials are often used in automotive applications. This is because they can handle higher temperatures and higher currents. However, a PCB must meet the temperature range (TUV) specified in its specifications.

 

What is the Difference Between PCB and PCBA?

What is the Difference Between PCB and PCBA?

There are a number of differences between PCB and PCBA, and it is important to understand what each means for your product. The differences are not limited to materials, but can also include component placement, soldering, and various inspections. Printed circuit boards can also be rigid or flexible.

Papan sirkuit tercetak

A printed circuit board is a medium that connects electronic components together in a controlled manner. These boards are a common material in electronics and electrical engineering. They are also commonly referred to as PCBs. Printed circuit boards are used in everything from cell phones to TV sets.

The PCB is a highly versatile product and can be customized to fit various electronic devices. They are also used in medical equipment, lighting, and automotive equipment. In fact, they’re found in nearly every piece of industrial machinery. They’re also used to reduce maintenance and inspection costs for electronic equipment.

A PCB’s construction process starts with a base material called the PCB substrate. Then, the board is covered with copper foil. The copper foil is a layer that contains copper traces. These traces are inserted and held firmly into place by solder.

Before the advent of printed circuit board assemblies (PCBA), components were packaged by attaching wires to the components and mounting them onto a rigid substrate. In the past, this material was made of bakelite, a material that replaced the top ply of plywood. Then, soldering was done manually on metal components to create conductive paths. However, this process was time consuming, made of many connections and wires, and was prone to short circuits.

Printed circuit board and pcb-a are two types of PCBA. Each type has its own uses and benefits. When combined, they are a complex electronic assembly.

Perakitan papan sirkuit tercetak

Printed circuit board assembly is a multi-step process that begins with the design of a circuit board. This design is then printed onto a copper-clad laminate. Next, the exposed copper is etched, leaving a pattern of circuit lines. The holes are then drilled, and the electronic components are inserted into these holes. This process is critical because every hole must be perfectly sized and aligned to fit the board’s components.

Printed circuit board assembly is a highly technical process that requires expertise and safety measures. The finished product must be flawless and include a metal tab to help protect the electronics from damaging the assembly process. Printed circuit board assembly has been around for many decades, and it is still one of the most popular methods of making electronic products. It can be used on both single and double-layered PCBs. New technologies, such as solderless technology, make it safer and easier to assemble, and reduce the size and weight of printed circuit boards.

When choosing the right assembly technology for your project, make sure to choose the right one for your needs. There are a number of methods to choose from, including manual soldering, pick-and-place machines, and surface mount technology. While many boards require only one type of technology, others require several types.

Printed circuit board design

A printed circuit board (PCB) is a printed circuit that contains electronic components. It typically consists of a copper layer, a substrate, and a silkscreen. Before the advent of PCBs, circuits were often built by connecting components by wires. These wires were then soldered to the component leads to form conductive paths. This method, however, was slow, difficult to manufacture, and difficult to debug.

Printed circuit board design starts with the initial layout of the circuit. After defining the shape of the board and importing component data from the schematic, the next step is the physical layout of the PCB. To begin with, component footprints must be placed within the board outline in the CAD system. These footprints display net connections as ghost lines, so users can see which parts they connect to. It is important to position parts properly to achieve maximum performance. This involves considering connectivity, noise, and physical obstructions, including cable and mounting hardware.

After the design has been approved, the next step is the selection of the materials and components for the PCB. This step is the most time-consuming and costly of the entire process, but it is crucial for the success of the final product. A board’s design process begins with determining the major components and determining which laminate materials are most suitable for a particular design.

10 Alat Desain PCB Terbaik

10 Alat Desain PCB Terbaik

Jika Anda mencari alat bantu desain PCB yang mudah dipelajari dan digunakan, Anda datang ke tempat yang tepat. Di sini Anda akan menemukan daftar 10 alat desain PCB terbaik, termasuk AutoTRAX DEX PCB, EasyEDA, dan gEDA. Alat-alat ini dapat digunakan oleh pemula maupun desainer berpengalaman.

EasyEDA

EasyEDA adalah alat desain PCB luar biasa yang gratis dan mudah digunakan. Perangkat lunak desainnya memiliki perpustakaan besar dengan lebih dari 500.000 simbol komponen dan tutorial yang ekstensif. Platform ini juga ramah pengguna dan nyaman digunakan dari mana saja. Alat ini juga dilengkapi dengan opsi untuk memesan PCB atau membuat prototipe.

Program desain memungkinkan Anda membuat pustaka komponen yang umum dengan beberapa klik. Program ini mendukung tautan langsung ke lebih dari 200.000 komponen stok real-time dari LCSC. Program ini juga dilengkapi dengan bilah pencarian yang memungkinkan Anda menemukan komponen apa pun yang Anda perlukan dengan cepat.

gEDA

gEDA adalah alat bantu gratis yang memudahkan untuk mendesain dan merakit PCB. Alat ini kompatibel dengan perangkat lunak tata letak PCB yang paling populer dan mendukung banyak platform. Rangkaian gSch2pcb mencakup utilitas untuk impor skematik/netlist, memeriksa aturan desain, router otomatis, pengoptimal jejak, dan pembuatan data RS-247X. gEDA juga menawarkan penampil file gerber. File Gerber digunakan untuk banyak operasi PCB dan merupakan format data standar untuk desain PCB.

gEDA tersedia di bawah lisensi GPL (General Public License), yang berarti bahwa pengguna dan penulis diberikan hak-hak tertentu. Hal ini memungkinkan gEDA untuk bebas dari penguncian vendor, tidak bergantung pada perangkat lunak berpemilik, dan tersedia dengan kode sumber lengkap. Karena lisensi GPL, gEDA dapat didistribusikan ulang secara bebas, ditingkatkan, dan di-porting ke platform lain. Selain itu, gEDA gratis dan akan selalu diperbarui.

PCB AutoTRAX DEX

Alat desain PCB AutoTRAX DEX adalah lingkungan pengembangan elektronik (EDA) berfitur lengkap dengan alat yang komprehensif untuk mengelola desain dari konsep hingga produksi. Alat ini dapat bekerja sama dengan perangkat lunak MCAD dan ECAD, serta mengelola data desain dan dokumentasi untuk mendukung seluruh proses desain dari konsep hingga produksi.

AutoTRAX DEX PCB terdiri dari perangkat lunak desain PCb terintegrasi dan manajer pengerjaan hirarkis yang intuitif. Ini adalah EDA untuk insinyur elektronik, dengan fitur profesional yang sangat penting untuk industri desain elektronik abad ke-21. Ini adalah solusi yang tepat bagi mereka yang mencari EDA yang tangguh dan mudah digunakan yang dapat menggantikan metode kuno.

Fritzing

Jika Anda sedang mencari alat desain PCB, Fritzing adalah pilihan yang tepat. Perangkat lunak ini memiliki antarmuka pengguna yang bersih dan menyediakan semua alat yang diperlukan untuk membuat sirkuit yang berkualitas. Ini menawarkan berbagai opsi untuk mengedit skematik, termasuk mengubah lebar dan penempatan jejak. Software ini juga dapat menghasilkan file Gerber. Software ini juga memiliki fitur yang dikenal sebagai Auto Router, yang secara otomatis dapat merutekan jalur tembaga untuk Anda.

Fritzing mudah digunakan dan sangat cocok untuk pemula atau siapa saja yang tidak memiliki pengalaman sebelumnya dalam desain PCB. Perangkat lunak ini memungkinkan Anda untuk menghubungkan papan Arduino dan memvisualisasikan koneksi antar komponen. Ini juga dapat mensimulasikan sirkuit untuk memverifikasi keakuratan. Hal ini dapat menghemat waktu dan uang Anda, karena Anda dapat menghindari kesalahan yang merugikan di kemudian hari.

ZenitPCB

ZenitPCB adalah alat desain PCB yang kuat yang dapat diunduh dan digunakan secara gratis. Alat ini menawarkan banyak fitur yang berguna untuk pemula atau pelajar. Namun, beberapa pengguna mungkin merasa alat ini kurang dalam beberapa aspek, seperti kemampuan untuk mengonversi skematik ke tata letak. Selain itu, perangkat lunak desain PCB ini hanya mendukung maksimum 1000 pin, yang membatasi kegunaannya.

ZenitPCB mudah digunakan dan memiliki antarmuka yang ringkas dan intuitif. Ini dibagi menjadi beberapa bagian, termasuk ruang kerja utama, tombol aplikasi, tombol cepat, dan informasi terkait proyek. Ini juga mencakup perpustakaan komponen dan daftar bersih, serta pintasan untuk berbagai operasi. Selain itu, juga dilengkapi dengan autorouter berbasis web gratis.

Alat untuk Mendesain PCB

Alat untuk Mendesain PCB

Gerber Panelizer

GerberPanelizer adalah alat bantu dalam membuat desain PCB. Ini memungkinkan Anda untuk mengedit tata letak dan kemudian mengekspornya sebagai file gerber gabungan akhir. Setelah diekspor, file gerber terkunci dan tidak dapat diedit atau diubah. Ekspor juga akan berisi rendering gambar.

Namun, ini bukanlah solusi yang sempurna. Meskipun alat ini merupakan alat yang bagus untuk membuat papan panel, alat ini tidak terlalu fleksibel. Anda perlu menambahkan fiducial di sepanjang tepi papan dan menambahkan lubang M4 di satu sisi. Namun demikian, program ini sangat mudah digunakan dan merupakan alat yang sangat baik untuk desain PCB. Saat ini sedang diperbaiki dan akan diperbarui dalam versi berikutnya.

Gerber Panelizer adalah alat yang ampuh untuk desain PCB. Ini sangat berguna bagi orang-orang yang membuat PCB mereka sendiri atau yang tertarik dengan Open Hardware. Salah satu kelemahan utama adalah bahwa ia ditawarkan tanpa dukungan dan rentan terhadap kerusakan fitur. GUI-nya berbasis jendela dan mono.

Layar utama Gerber Panelizer memiliki daftar semua langkah CAM. Klik pada suatu langkah untuk melihat isinya. Anda juga dapat mengklik nama langkah.

Gerber

Ketika Anda membuat file Gerber di Altium Designer, Anda akan dapat membuat beberapa tata letak papan dalam satu file. File Gerber adalah file yang menjelaskan kebutuhan Anda untuk fabrikasi dan perakitan PCB. File ini mencakup templat untuk topeng solder, gambar silkscreen, dan lubang bor. Jenis file ini dapat diekspor ke produsen PCB.

Anda juga dapat menyisipkan objek ke dalam panel dengan perintah Add Insert pada menu klik kanan. Untuk menyisipkan objek di papan, Anda dapat menempatkannya di langkah induk atau campanel dengan mengklik kanan pada papan. Pastikan untuk menghapus pola ventilasi yang telah Anda terapkan sebelumnya. Jika tidak, data akan muncul tanpa batas.

Anda juga dapat membuat desain satu sisi dan mengekspornya sebagai Gerber. Untuk ini, Anda perlu mengatur lapisan atas dokumen CAM Anda menjadi "top" dan kemudian membuat panel PCB. Kemudian, Anda dapat menambahkan Gerber ke kotak yang akan dibuat dalam proyek.

Altium Designer mendukung fitur panelisasi Gerber dan memungkinkan Anda untuk membuat tata letak papan dengan beberapa desain. Dengan panelizer Gerber, Anda dapat mendesain PCB dengan bentuk yang aneh dan beberapa desain pada panel yang sama.

KiKit

Membuat papan sirkuit cetak berpanel dapat menjadi proses yang memakan waktu, dan cara terbaik untuk mempercepatnya adalah dengan menggunakan toolkit KiKit. Alat ini memungkinkan Anda mengelompokkan papan dengan mudah ke dalam panel sehingga dapat disolder ulang bersama dalam proses yang cepat. Biasanya, hal ini memerlukan pengelompokan dan perakitan papan secara manual, tetapi KiKit membuatnya mudah dengan membuat skrip yang dapat mengumpulkan enam papan dalam sekali jalan. Skrip ini menggunakan mousebite untuk menyatukannya, sehingga dapat dengan mudah dipisahkan setelah penyolderan selesai.

KiKit menggunakan skrip berbasis Python untuk mengatur papan ke dalam sebuah kisi. Skrip ini cukup fleksibel untuk menangani mousebite dan v-cut, dan bahkan memungkinkan pemisahan papan setelah produksi. Karena distribusi komponen PCB sangat besar, mengelompokkannya ke dalam panel membuat proses perakitan menjadi lebih cepat. Mereka kemudian dapat ditempatkan dalam oven reflow atau mesin pick-and-place sebagai satu unit.

PCB berpanel membutuhkan dukungan yang memadai untuk mencegah pelepasan yang tidak disengaja. Anda dapat memindahkan panel di papan dan menyesuaikan jarak tepi. Kemudian, Anda siap membuat papan yang sudah jadi. Ingatlah untuk membuat margin setidaknya satu inci pada papan. Anda harus melakukan ini untuk beberapa lapisan.

Proses panelisasi sangat penting untuk membuat PCB khusus, dan Altium Designer menyediakan sejumlah alat untuk tugas ini. Ini termasuk fitur CAD dan CAM, dan kemampuan untuk menentukan PCB yang dipanelisasi. Selain itu, ini mengintegrasikan file desain dengan PCB yang dipanelisasi sehingga mudah untuk membuat perubahan tanpa membuat ulang panel.

Analisis Penyebab Kurangnya Kilap Solder pada SMT Patch

Analisis Penyebab Kurangnya Kilap Solder pada SMT Patch

Kilauan solder yang tidak memadai pada sambungan solder disebabkan oleh beberapa faktor. Suatu komponen bisa saja memiliki solder yang tidak memadai, bisa saja terlalu panas untuk waktu yang lama, atau bisa juga terkelupas pada sambungan solder karena usia atau panas yang berlebihan.

Penyolderan dingin

Masalah kilap solder yang tidak mencukupi pada tambalan SMT sering kali disebabkan oleh penyolderan yang tidak memadai. Kilap solder yang tidak mencukupi dapat melemahkan sambungan solder dan meningkatkan kerentanannya terhadap kegagalan dan keretakan. Untungnya, ada beberapa cara untuk mengatasi masalah ini, termasuk menggunakan lebih banyak solder atau memanaskan kembali sambungan.

Kilap solder yang tidak memadai disebabkan oleh fluks yang tidak mencukupi atau terlalu panas selama penyolderan. Pembasahan yang tidak memadai juga dapat diakibatkan oleh kegagalan memanaskan pin dan pad secara merata atau kurangnya waktu untuk mengalirkan solder. Ketika hal ini terjadi, lapisan oksida logam dapat terbentuk pada objek yang disolder. Dalam kasus seperti itu, teknik perbaikan harus digunakan untuk membersihkan papan dan menerapkan solder secara merata pada kedua komponen.

Oksidasi PCB

Kilauan solder yang tidak mencukupi pada tambalan SMT dapat disebabkan oleh sejumlah alasan. Salah satu masalah umum adalah penyimpanan dan pengoperasian pasta solder yang tidak tepat. Pasta solder mungkin terlalu kering atau memiliki tanggal kedaluwarsa. Pasta solder mungkin juga memiliki viskositas yang buruk. Selain itu, pasta solder dapat terkontaminasi dengan bubuk timah selama penambalan.

Biasanya, masalah ini terjadi apabila PCB dibiarkan tidak terlindungi untuk waktu yang lama. Penyebab umum lain dari sambungan solder yang buruk adalah oksidasi pada bantalan dudukan permukaan. Oksidasi dapat terjadi pada permukaan PCB selama penyimpanan atau selama pengiriman. Terlepas dari penyebab masalah ini, penting untuk mengambil langkah-langkah untuk mencegah hal ini terjadi.

Bola solder

Bola solder adalah bola kecil solder yang dapat menimbulkan konsekuensi serius terhadap fungsionalitas papan sirkuit. Bola kecil dapat memindahkan komponen dari tempatnya dan bola yang lebih besar dapat menurunkan kualitas sambungan solder. Selain itu, bola-bola tersebut dapat menggelinding ke bagian lain dari papan, menyebabkan celana pendek dan luka bakar. Masalah ini dapat dihindari dengan memastikan bahwa bahan dasar PCB sudah kering sebelum dipatri.

Memilih pasta solder yang tepat untuk digunakan selama penyolderan adalah elemen kunci dalam meminimalkan risiko bola solder. Menggunakan pasta yang tepat dapat sangat mengurangi kemungkinan harus mengerjakan ulang papan. Laju pemanasan awal yang lambat akan memungkinkan solder menyebar secara merata ke seluruh permukaan dan mencegah pembentukan bola solder.

Kelebihan solder

Kilauan solder berlebih dalam proses tambalan SMT sering kali disebabkan oleh kombinasi beberapa faktor. Yang pertama adalah suhu pemanasan awal yang rendah, yang akan memengaruhi penampilan sambungan solder. Yang kedua adalah adanya residu solder. Yang terakhir ini dapat membuat sambungan solder tampak kusam atau bahkan mati rasa.

Pasta solder yang mengotori stensil adalah penyebab umum lainnya. Jika pasta tidak mengalir dengan benar, kelebihan solder dapat mengalir dan mengaburkan sambungan sambungan solder. Untuk menghilangkan kelebihan solder, gunakan pengisap solder, sumbu solder, atau ujung besi panas.

Pengelasan yang salah

Sambungan solder dengan kilap yang tidak memadai, bisa jadi disebabkan oleh kesalahan pengelasan. Solder mungkin memiliki pembasahan yang buruk, berwarna gelap atau tidak memantulkan cahaya, atau terlalu kasar untuk terlihat bagus. Penyebab yang mendasarinya adalah bahwa solder tidak dipanaskan secara memadai untuk mencapai suhu yang cukup tinggi agar solder meleleh sepenuhnya.

Pasta solder gagal melakukan tugas penyolderan karena tidak tercampur atau tersimpan dengan benar. Pasta mungkin tidak sepenuhnya larut kembali dalam rendaman solder, dan bubuk timah dapat tumpah selama proses penyolderan. Penyebab lainnya adalah pasta solder mungkin memiliki tanggal kedaluwarsa. Kemungkinan penyebab ketujuh dari kurangnya kilap solder pada tambalan SMT adalah hasil dari teknologi produksi yang digunakan oleh pemasok pasta solder.

Rongga solder

Rongga solder pada tambalan SMT dapat berdampak negatif pada keandalan dan fungsionalitas komponen. Rongga ini mengurangi penampang bola solder, yang mengurangi jumlah solder yang dapat mentransfer panas dan arus. Selain itu, selama reflow, rongga kecil yang sudah ada sebelumnya dapat bergabung membentuk rongga besar. Idealnya, rongga harus dihilangkan atau dikurangi hingga ke tingkat yang dapat dikelola. Namun, banyak penelitian menunjukkan bahwa rongga moderat dapat meningkatkan keandalan dengan mengurangi perambatan retak dan meningkatkan ketinggian sambungan solder.

Rongga solder pada tambalan SMT bukanlah masalah serius jika jarang terjadi dan tidak memengaruhi keandalan. Namun, keberadaannya dalam suatu produk menandakan perlunya penyesuaian dalam parameter manufaktur. Beberapa faktor dapat berkontribusi pada keberadaan lubang solder pada patch SMT, termasuk fluks yang terperangkap dan kontaminan pada papan sirkuit. Keberadaan rongga ini dapat dideteksi secara visual dalam gambar sinar-X, di mana rongga tersebut muncul sebagai titik yang lebih terang di dalam bola solder.