Jaka jest różnica między SMD a NSMD?

Jaka jest różnica między SMD a NSMD?

SMD and NSMD are two types of semiconductors. While their pads are similar in size, NSMD components have smaller dimensions. In contrast, SMDs can be moved by the soldering iron, while a through-hole component can be mechanically secured prior to soldering.

NSMD pads are smaller

There are several differences between NSMD pads and SMD pads. Firstly, the solder mask for NSMD pads is made much smaller. This allows for the pad edge to leave a small gap that is not present on SMD pads. The following figure shows a top and cross-section view of an NSMD-style pad.

NSMD pads are smaller than SMD pads and are therefore more suitable for high density board layouts. They also allow more space between adjacent pads and allow easier trace routing. As a result, NSMD pads are used in high-density BGA chips. However, NSMD pads are more susceptible to delamination, but standard manufacturing practices should prevent this problem.

In addition to being smaller, NSMD pads are cheaper to manufacture. This is due to the fact that they are made of less expensive materials. However, this does not mean that they are of inferior quality. Whether you choose NSMD or SMD will depend on your application. For example, a board with large pads will need a solder mask that has a larger solder mask aperture than one with small pads.

When it comes to manufacturing BGA components, proper pad design is crucial. NSMD pads are smaller because they have solder mask apertures that are smaller than the copper pad diameter. NSMD pads also have a risk of asymmetrical solder bump, which will tilt the device on the PCB.

NSMD pads are used for diodes

NSMD pads are a kind of diode-packaging pads that differ from SMD pads in one important way: a gap is left between the pad edge and solder mask. Using a NSMD-style pad can result in improved solder connections and package pads with wider trace widths.

The solder lands on a PCB are either solder-mask defined or non-solder mask defined. The non-solder-mask defined pad is characterized by a gap between the solder mask and the circular contact pad. Solder flows over the top and sides of the contact pad to create a high-quality solder joint.

The diameter of an NSMD pad is often smaller than the diameter of a BGA pad. This reduced size allows easier trace routing. However, NSMD pads can be more prone to delamination than SMD pads. As a result, it is necessary to adhere to standard manufacturing practices to minimize the possibility of pad delamination.

When soldering BGA components, the pad design plays a crucial role. A bad pad can lead to poor manufacturability and costly hours of failure analysis. Fortunately, there are simple guidelines for pad design. With a little practice, you can make the correct NSMD pads for your BGA components.

NSMD pads are used for transistors

When using NSMD pads for transistors, you must remember that a NSMD pad is smaller than a corresponding SMD pad. This difference is due to the fact that the NSMD pads have a larger opening for the solder mask to fit. This allows for greater surface area for solder joints, a wider trace width, and increased flexibility in through-holes. However, this difference also means that an NSMD pad is more likely to fall off during the soldering process.

The diameter of a copper pad is a key factor in defining the size of an NSMD pad. NSMD pads are approximately 20% smaller than a solder ball, allowing for better trace routing. This reduction is necessary for high-density BGA chips. However, a NSMD pad is more prone to delamination, but standard manufacturing practices should minimize this problem.

NSMD pads are a good option when soldering transistors. These types of pads are often used in applications where transistors must be soldered through a hole in a metal substrate. This makes the soldering process easier and less time-consuming. However, the downside of using a NSMD pad is that you can’t get the same level of control over the soldering process as with a SMD pad.

The other major advantage of using SMD pads is that they can be easily manufactured. This method is very popular for manufacturing electronic components, as it is the most cost-effective way to create a high-quality board. Furthermore, the SMD approach is also a good way to minimize the number of variables that are involved in your design.

Najczęstsze wady PCB i ich rozwiązania

Najczęstsze wady PCB i ich rozwiązania

Istnieje wiele problemów z PCB, ale niektóre z nich są mniej oczywiste niż inne. Problemy te nazywane są awariami implementacyjnymi i wymagają specjalistycznej wiedzy do ich zdiagnozowania. Na przykład, wyładowania elektrostatyczne, wycieki chemiczne, podniesione pady i przesunięcie komponentów są możliwymi przyczynami awarii. Aby zidentyfikować tryby awarii, płytka PCB musi zostać poddana testom obciążeniowym aż do momentu awarii.

Wyładowania elektrostatyczne

Wyładowania elektrostatyczne (ESD) są częstym problemem w układach elektronicznych. Wynika ono z niewłaściwego obchodzenia się z komponentami elektronicznymi lub zbyt wysokiego poziomu napięcia. W wielu przypadkach powstałe uszkodzenia są ukryte lub katastrofalne. Problem ten może spowodować częściową lub całkowitą awarię płytki PCB.

Istnieje kilka sposobów wykrywania i naprawy wyładowań elektrostatycznych. Podczas gdy niektóre z nich są widoczne i wpływają na działanie produktu, inne nie. Pierwszą metodą jest sprawdzenie urządzenia w celu ustalenia, czy jakikolwiek element jest uszkodzony. W niektórych przypadkach na płytce drukowanej pojawi się niewielki otwór.

Wyciek substancji chemicznych

Wyciek chemikaliów PCB może stanowić problem dla wielu gałęzi przemysłu. Chociaż Stany Zjednoczone zakazały produkcji PCB w 1977 roku, nadal występują one w środowisku na bardzo niskich poziomach. Cykl środowiskowy jest głównym źródłem PCB w otoczeniu i są one transportowane w ekosystemach. Chociaż poziom tych zanieczyszczeń jest niski, mogą one mieć poważny wpływ na ludzi i środowisko.

Oprócz zastosowania w elektronice, PCB były również wykorzystywane przy budowie budynków szkolnych w latach 50. i 70. ubiegłego wieku. Wiele szkół posiadało zawierające PCB uszczelki i fluorescencyjne oprawy oświetleniowe. Problem z tymi produktami polegał na tym, że wyciekały, powodując zanieczyszczenie innych materiałów budowlanych i gleby. Spowodowało to powszechne skażenie, dlatego produkty te zostały zakazane.

Podniesione podkładki

Podniesione pady są spowodowane wieloma przyczynami, w tym nadmiernym ciepłem i siłą podczas lutowania. Rezultatem może być niezadowalające połączenie lutowane. Wady te wymagają ponownego lutowania i mogą prowadzić do ryzyka zwarcia. Inne przyczyny uniesionych padów to zanieczyszczenie zanieczyszczeniami, złe czyszczenie lub niewystarczająca ilość topnika. Uniesione pady mogą wpływać na funkcjonowanie obwodów i wygląd płytki.

Podniesione pady występują najczęściej na cienkich warstwach miedzi i płytach, które nie mają powłoki przelotowej. Zidentyfikowanie pierwotnej przyczyny podniesienia jest kluczowe dla zapobiegania dalszym uszkodzeniom. W przypadku jednostronnych płytek drukowanych, problem jest często wynikiem niewłaściwego lutowania na fali. Podniesieniu można zapobiec, zachowując szczególną ostrożność podczas obsługi płytek drukowanych i unikając nadmiernej siły podczas przenoszenia komponentów.

Przesunięcie komponentu

Przesunięcie komponentów jest jednym z najczęstszych defektów napotykanych podczas montażu PCB. Może to być spowodowane wieloma czynnikami, w tym nieprawidłowym umieszczeniem komponentów. Na przykład, komponent umieszczony w sposób, który nie jest prawidłowo zorientowany, może się unosić, powodując jego ponowne wyrównanie.

W niektórych przypadkach przyczyną przesunięcia komponentu jest niedopasowanie części do geometrii podkładki. Powoduje to przesunięcie komponentu w kierunku najbliższej masy termicznej. Inne przyczyny obejmują wygięte przewody, nieprawidłowo umieszczone komponenty lub utlenianie. Na szczęście istnieje wiele rozwiązań problemu przesuwania się komponentów. Na przykład, przestrzeganie prawidłowego profilu rozpływu, ograniczenie ruchu podczas procesu montażu bez rozpływu i stosowanie agresywnego topnika może pomóc zminimalizować ruch komponentów.

Wady kulek lutowniczych

Wady kulek lutowniczych są powszechne w procesie montażu SMT. Są to zasadniczo kulki lutowia, które oddzielają się od głównego korpusu lutowia. Aby im zapobiec, należy precyzyjnie wyregulować nacisk montażowy na montażownicy chipów. Zapobiegnie to wyciskaniu pasty lutowniczej z pada i zwiększy szansę na prawidłowe wygenerowanie pasty lutowniczej.

Dobre połączenie lutowane będzie czyste, symetryczne i będzie miało wklęsły kształt. Z drugiej strony, złe połączenie lutowane może być duże i mieć długi trzon. Innym częstym defektem są uszkodzone złącza, które mają łuszczący się, zniekształcony lub nierówny wygląd.

Obrazowanie termiczne

Obrazowanie termowizyjne to potężne narzędzie do kontroli jakości, przyspieszające naprawy płytek drukowanych i komponentów. Identyfikując gorące punkty, obrazy termowizyjne mogą wskazywać wadliwe komponenty lub obszary, które zużywają zbyt dużo energii. Informacje te mogą pomóc projektantom zmniejszyć zużycie energii i wydłużyć żywotność baterii. Obrazowanie termiczne może również wykryć obszary, które mają słabe zarządzanie termiczne, wymagające większego chłodzenia, większych radiatorów, a nawet przeprojektowania.

Obrazowanie termowizyjne wad PCB może również pomóc projektantom i inżynierom określić przyczynę wad. Gdy płytka testowa nie przejdzie testów kontroli jakości, kamera termowizyjna może ujawnić problemy. Może również pokazać różnice temperatur między dwoma różnymi obszarami płytki, ujawniając różnice między nimi.

5 czynników wpływających na jakość lutowania SMT

5 czynników wpływających na jakość lutowania SMT

Several factors impact the quality of SMT soldering. These include equipment state, Solder paste quality and Stability. Understanding these factors will help you improve your SMT soldering processes. The best way to improve the quality of SMT soldering is to implement improvements in every area.

Stability

In a manufacturing process where components are placed on a PCB, the stability of the solder joints is important to the performance of the circuit. However, in certain conditions, the soldering process can be unstable. In these conditions, lead-free SnAgCu soldering paste is used to reduce thermal stress on the substrate. This type of solder paste has an advantage over other materials: it can be used on various substrates and can be applied by dispensing the paste onto the device surface.

A good solder paste will be stable to a specified temperature. The best way to check the stability of your solder paste is to use a viscometer to measure its viscosity. A good paste should be between 160 Pa*S and 200 Pa*S.

Repeatability

During the soldering process, the flux is a key ingredient for the successful soldering process. If the flux is insufficient or there are too many impurities, the soldering process can fail. The best way to ensure the repeatability of SMTS soldering is to carefully prepare components and PCB pads before soldering. It is also important to properly maintain the temperature of the reflow and to avoid any movement of the assembly during reflow. Lastly, the alloy must be analysed for any contaminants.

While lead-free solders are recommended, leaded solder can be used in certain cases. However, it is important to note that leaded solder does not have the flux needed to make reliable joints. As a result, the soldering process is not repeatable.

Equipment state

Many factors affect the quality of SMT soldering. These factors include the design of PCB pads, the quality of the solder paste, and the state of equipment used for manufacturing. Each of these factors is fundamental for reflow soldering quality insurance. Moreover, they can also influence soldering defects. To improve soldering quality, it is essential to use excellent PCB pad designs.

In addition to the selection of components, the mounting precision is another factor affecting the quality of the solder joint. The equipment used for mounting must have high precision so that the components remain stable. In addition, the mounting angle should be correct to ensure that the polar device is correctly oriented. Also, the thickness of the component after mounting must be appropriate.

Solder paste quality

Soldering defects can be the result of a variety of factors. Often, these problems are caused by improper PCB design. Incorrect pad design can result in components that shift or tombstone-shape, as well as soldering defects. For this reason, the design of PCB pads should be carefully scrutinized to avoid these problems.

Temperature and humidity play a significant role in the quality of solder paste. An ideal temperature for application is around 20 degrees Celsius and the right humidity is between thirty to fifty percent. High moisture levels can cause balls to form, which affects the soldering process. Scraping blade speed and quality are also important factors that affect soldering. For optimal results, solder paste should be applied starting from the core and move towards the edges of the board.

Speed, scraper pressure, stencil descending speed, and stencil cleaning mode should all be optimized for maximum solder paste printing. Improper speed can result in uneven solder paste printing and may reduce production efficiency. Another critical parameter is stencil cleaning frequency. Too high or too low stencil cleaning speed can cause a buildup of tin, which can affect production efficiency.

PCB design

PCB design is a critical aspect of manufacturing quality. It involves the proper positioning of components on the board to ensure that they are mounted correctly. It should include enough clearance for mechanical fixing holes. Otherwise, the delicate components can be damaged. In addition, solder joints near the footprints of surface mount components may result in shorts. Hence, it is essential that the PCB design allows for the proper placement of both conventional and surface mount components.

In addition to the correct placement of components, the proper PCB design can also contribute to SMT soldering. According to HP statistics, about 70 to 80 percent of manufacturing faults are caused by defects in the PCB design. The factors that affect the design of the PCB include component layout, thermal pad design, component package types, and assembly method. The PCB design must also consider electromagnetic compatibility (EMC) points and via positions.

How High Thermal Conductivity PCB Material Will Solve the Heat Dissipation Problem

How High Thermal Conductivity PCB Material Will Solve the Heat Dissipation Problem

PCBs, also known as printed circuit boards, are layered structures made of copper foils sandwiched between glass-epoxy layers. These layers serve as a mechanical and electrical support for components. The high-conductivity copper foils serve as the conductive circuit in the PCB, while the glass-epoxy layer serves as the non-conductive substrate.

High thermal conductivity pcb material

Thermal conductivity is the ability of a material to transfer heat away from a device. The lower the thermal conductivity, the less efficient the device is. High thermal conductivity materials can eliminate the need for vias and produce a more uniform temperature distribution. This also reduces the risk of localized volumetric expansion, which can lead to hotspots near high-current components.

A typical PCB for a personal computer might consist of two copper planes and two outer trace layers. Its thickness is about 70 um and its thermal conductivity is 17.4 W/mK. The result is that the typical PCB is not an efficient heat conductor.

Copper coins

Copper coins are small pieces of copper embedded into the PCB. They are placed under the component that produces the most heat. Their high thermal conductivity allows them to transfer heat away from the hot component to a heat sink. They can be made in different shapes and sizes to fit the desired areas and can be metalized to ensure a tight connection.

Glass-epoxy

The problem of heat dissipation is becoming more important in electronics. Excess heat can lead to underperformance and early failure. Currently, heat dissipation options are limited, particularly in the extreme environments. One of the solutions to this problem is the use of high-temperature glass epoxy PCB material, or HDI-PCB. This material is able to solve this problem by having a thermal conductivity over two hundred times better than FR4 composite.

The glass epoxy resin has excellent heat and flame resistance. It has a high glass transition temperature and high thermal conductivity. It can serve as an insulating layer and a heat dissipation layer. It can be made by impregnation or coating. The thermal conductivity of glass epoxy PCB will improve the performance and stability of electronic components.

Metal core PCBs

Metal core PCB manufacturers have introduced new board substrates that can withstand high temperatures. This allows them to selectively apply thicker copper layers that have higher thermal conductivity. This type of PCB enables better heat dissipation and can be used for fine circuit patterns and high-density chip packaging.

In addition to offering higher thermal conductivity, metal PCBs are also dimensionally stable. Aluminum metal core PCBs have a 2.5-3% size change when heated, making them ideal for high-power applications. Their low thermal expansion properties also make them suitable for high switching power. The most commonly used metal used for a metal core PCB is aluminum, which is cheap and recyclable. Its high thermal conductivity allows for a fast cooling process.

Another problem associated with heat dissipation is the risk of excessive heat. The heat generated by heat-generating components must be removed from the board, otherwise the PCB will not perform at its best. Fortunately, there are now new options to solve this problem. High thermal conductivity metal core PCBs are a new kind of thermal solution that can overcome these problems.

FR4 substrates

PCBs are layered structures made of copper foils and glass-reinforced polymers. They support and connect electronic components. The copper creates a conductive circuit within the PCB, while the glass-epoxy layer acts as a nonconductive substrate.

High-power components are best placed near the center of the PCB, rather than on the edges. This is because heat accumulates near the edges and scatters out. Also, heat from high-power components should be placed far away from sensitive devices, and the heat must be channeled away through the PCB.

High thermal conductivity PCB material is the best solution for heat dissipation, allowing for rapid transfer of heat and preventing heat accumulation. High-tech PCBs use copper base, aluminum, or ceramic as the substrate material. This will solve the heat dissipation issues and make the PCBs more durable.