An Illustrated History Of Printed Circuit Boards

An Illustrated History Of Printed Circuit Boards

The first printed circuit board (PCB) was developed in the 1930s by Paul Eisler, who studied engineering and was a magazine editor before taking up the field of electrical engineering. Eisler had the idea that printing on paper could be used for more than just newspapers. He developed the idea in a tiny one-room flat in Hampstead, London.

Moe Abramson

The history of printed circuit boards has been influenced by many technological developments. Some of the first PCBs were created by Moe Abramson, a computer engineer who helped develop the auto-assembly process. Abramson also developed copper foil interconnection patterns and dip soldering techniques. His process was later improved upon, and his work led to the standard process of manufacturing printed circuit boards.

The printed circuit board is a circuit that mechanically supports and electrically connects electronic components. It is typically made from two or more layers of copper sheets. Its manufacturing process allows for higher component density. It also has plated-through holes for electrical connections. More advanced PCBs also incorporate embedded electronic components.

Stanislaus F. Danko

The history of printed circuit boards dates back to the mid-20th century. Before that, electronic components had wire leads and were soldered directly to the PCB’s trace. The first auto-assembly process was developed by Moe Abramson and Stanislaus F. Danko, who were members of the U.S. Signal Corps. They patented this process, and it has since become the standard method of printed circuit board fabrication.

Printed circuit boards are an important part of electronic devices. From their humble beginnings in the mid-19th century, they have become commonplace. Their evolution has been driven by rising consumer demands. Today’s consumers expect instant response from their electronic devices. In 1925, Charles Ducas developed a process called “printed wire” to reduce the complexity of wiring. Dr. Paul Eisler built the first operational PCB in Austria in 1943.

Harry W. Rubinstein

The history of printed circuit boards has been largely shaped by a man named Harry W. Rubinstein, who served as a research scientist and executive with Globe-Union’s Centralab division from 1927 until 1946. Rubinstein was responsible for several innovations while at Centralab, including improved roller skates, spark plugs, and storage batteries. However, his most famous invention was the printed electronic circuit.

The history of printed circuit boards starts in the early 1900s, when electronic components used to be soldered onto a PCB. The PCB had holes for wire leads, and the leads were inserted through those holes and then soldered to the copper traces on the board. However, in 1949, Moe Abramson and Stanislaus F. Danko developed a technique that involved inserting component leads into a copper foil interconnection pattern and dip soldering them. This process was later adopted by the U.S. Army Signal Corps, and eventually became a standard way to fabricate printed circuit boards.

Surface mount technology (SMT) components

SMT is a technology that allows electronic components to be applied directly to the surface of a printed circuit board (PCB). This allows for more efficient production and a more compact design. It also reduces the number of drilled holes, which can result in a lower production cost. SMT components are also more robust and can withstand higher levels of vibration and impact.

The major advantage of surface-mount technology over through-hole components is that it is highly automated and reduces the number of failures during the welding process. In addition, SMT components are much cheaper to package than their THT counterparts, which means the selling price is lower. This is a huge advantage for those clients who are looking for large-volume printed circuit boards.

Multiple layers of copper

PCBs with multiple layers of copper are constructed from multiple layers of copper foil and insulating material. The copper layers may represent a continuous copper area, or they may represent separate traces. The conductive copper layers are connected to each other using vias, which are thin channels that can carry current. These conductive layers are often used to reduce EMI and provide a clear current return path. Listed below are some benefits of using copper on printed circuit boards.

Multilayer PCBs are more costly than single-layer boards. They are also more complex to manufacture and require a more complicated manufacturing process. Despite the high cost, they are popular in professional electronic equipment.

Elektromanyetik uyumluluk

Electromagnetic compatibility (EMC) is an important aspect of a product’s design. EMC standards are a prerequisite for ensuring safe operation of products. The design of a PCB must be electromagnetically compatible with its components and environment. Typically, printed circuit boards do not meet EMC standards on the first pass. Therefore, the design process should be centered on meeting EMC standards from the beginning.

There are several common techniques to achieve electromagnetic compatibility. One method involves putting a ground layer on a PCB. Another method involves using ground grids to provide low impedance. The amount of space between the grids is important in determining the ground inductance of the circuit board. Faraday cages are another way to reduce EMI. This process involves throwing ground around the PCB, which prevents signals from traveling beyond the ground limit. This helps reduce the emissions and interference produced by PCBs.

Galvanik Korozyonun PCB Üzerindeki Etkisi Nedir?

Galvanik Korozyonun PCB Üzerindeki Etkisi Nedir?

If you’ve ever wondered what is the impact of galvanic corrosion to a PCB, you’re not alone. This type of corrosion causes neighboring traces to become contaminated by a solution or ionic liquid, and small slivers grow between the traces. These slivers can cause short circuits or even disable a functional block on the PCB. If the corrosion affects the power lines on the PCB, you could experience a whole device malfunction.

Examples of galvanic corrosion on a PCB

Galvanic corrosion is an electrochemical process whereby the surface of one metal reacts with the surface of another metal. This reaction takes place in the presence of an electrolyte, and it usually occurs between dissimilar metals. In primary cells, this process is exploited to create useful voltage.

The corrosion process begins when moisture, or ionic liquid, contacts an exposed metal part. Upon contact, metal oxides begin to grow and cause the surface to corrode. This process can also affect adjacent circuit boards, causing short circuits and deterioration of the entire board.

One way to minimize galvanic corrosion is to use corrosion inhibitors. These are effective at reducing galvanic potential, but require constant monitoring. They also increase the conductivity of water. So, it’s important to properly maintain the PCB when working with it.

Another method for preventing galvanic corrosion is to use antioxidant paste between copper and aluminum electrical connections. This paste consists of metal with a lower electro potential than copper. This will help to ensure that metals do not come into contact with each other and minimize the chance of galvanic corrosion.

Galvanic corrosion is often a result of dissimilar metals used in soldering joints. Because of this, it’s crucial to choose the right material for mating connectors. Materials with the same ionic potential are more likely to resist corrosion than those with dissimilar metals.

Process for reducing galvanic corrosion degree on a PCB

The degree of galvanic corrosion on a PCB board can be reduced in various ways. The first technique involves analyzing the network and finding the causes of galvanic corrosion, and the second technique involves increasing the area of the organic coating process (OSP) disk in the network.

The copper pads on a PCB are protected by a surface finish, but moisture can enter under the finish. Once inside, moisture reacts with the copper and starts a corrosion process. This process can then spread along the trace. In many cases, galvanic corrosion occurs due to contact between two dissimilar metals, such as copper on a PCB and the metal of a component. The presence of a corrosive electrolyte also increases the chance of galvanic corrosion.

Galvanic corrosion is a common problem in electronics, particularly in high-speed applications. It happens when two dissimilar metals are in contact with an electrolyte. When two dissimilar metals are in electrical contact, the more reactive metal atoms lose electrons and cause oxidation. This leads to a short circuit.

Keeping PCBs clean is critical to their longevity and ensure the longevity of the devices. The prevention of corrosion starts with keeping them dry and free of liquids. As a result, PCB manufacturers and designers must carefully protect their boards against moisture beading on exposed conductors.

Typical corrosion failure types in electronics

Typical galvanic corrosion failure types in electronic devices occur due to different types of processes. One of them is the formation of a water film on the PCBA, which can lead to leakage currents and a wrong output signal from the electronic device. Another type of corrosion failure is caused by a defect in the manufacturing process. This corrosion type often results in a short circuit in the switch.

The rate of corrosion depends on several factors, including temperature and the surrounding environment. The presence of moisture, dew, or condensation will accelerate the process. The presence of dust particles will also increase the corrosion rate because they retain moisture. Dust particles come from a variety of sources, including soil/sand, smoke, soot particles, and salts.

Stainless steel and zinc are examples of noble and active materials. The higher the relative difference between the two metals, the greater the amount of force that will be exerted during galvanic corrosion. A cathode with a large surface area will corrode at a high rate due to the high current.

Galvanic corrosion is a major concern in industrial design. Magnesium is a highly active structural metal. It is used in the aerospace and auto industries. The area ratio of the cathode and anode will also affect the amount of current produced by galvanic corrosion. Insulation spacers between two metals may also reduce the risk of galvanic corrosion by changing the distance between them.

BGA Bileşenlerinin Lehim Bilyası Sorunları ve Çözümleri

BGA Bileşenlerinin Lehim Bilyası Sorunları ve Çözümleri

BGA bileşenlerinin lehim topu sorunları, bileşenlerin bozulmasına yol açabilecek yaygın sorunlardır. Bu sorunlara lehim topunun delaminasyonu veya oksidasyonu neden olur. Neyse ki, çözüm yolları basittir ve karmaşık teknik bilgi gerektirmez. Bu çözümler bileşenlerinizin daha fazla zarar görmesini önlemenize yardımcı olacaktır.

Lehim bilyası delaminasyonu

BGA bileşenleri, genellikle "yastık içi kafa kusurları" olarak adlandırılan lehim toplarıyla ilgili sorunlara eğilimlidir. Sorun, iki metal yüzey mekanik olarak, genellikle bir lehim topu ile bağlandığında ortaya çıkar. Bilye ve lehim arasındaki temas miktarı, lehimleme işlemine ve parçalara uygulanan ısı ve basınca bağlı olarak değişir. Bu hatanın nedenini ve önlenmesine yönelik çareleri anlamak için çeşitli çalışmalar yapılmıştır.

Hatalı bir BGA, ürünün işlevselliği üzerinde ciddi etkilere sahip olabilir. Tipik bir çözüm, etkilenen bileşeni yenisiyle değiştirmektir. Ancak bu çözüm sorunlu ve pahalı olabilir. Daha iyi bir alternatif BGA bileşenini yeniden toplamaktır. Bir teknisyenin etkilenen bileşenleri çıkarması ve çıplak alanlara yeni lehim takması gerekir.

Lehim topu sorunlarını önlemek için doğru test soketini kullanmak önemlidir. İki tür test soketi vardır: pençe şekilli soketler ve iğne uçlu soketler. İlki lehim topunun genişlemesine ve deforme olmasına neden olurken, ikincisi lehim topunda çarpma ve aşınmaya neden olur.

Lehim topu oksidasyonu

BGA bileşenlerinin lehim topu oksidasyonu sorunları elektronik üretiminde giderek büyüyen bir sorundur. Bu kusurlar, lehim yeniden akıtma işlemi sırasında BGA/CSP bileşen lehim kürelerinin erimiş lehim pastası ile tam olarak birleşmemesinden kaynaklanır. Bu kusurlar hem kurşunsuz hem de kalay-kurşun lehimli montajları etkilemektedir. Ancak, bu sorunları azaltmanın yolları vardır.

Bu sorunu önlemenin bir yolu yarı sıvı lehim pastası kullanmaktır. Bu, bilyenin ısıtıldığında kısa devre yapmamasını sağlayacaktır. Sağlam bir lehim bağlantısı sağlamak için kullanılan lehim alaşımı dikkatle seçilir. Bu alaşım aynı zamanda yarı sıvıdır ve tek tek bilyelerin komşu bilyelerden ayrı kalmasını sağlar.

Lehim topu oksidasyonunu önlemenin bir başka yolu da BGA bileşenlerinizi taşıma sırasında korumaktır. Taşıma veya nakliye sırasında BGA bileşenlerinizin statik olmayan köpük bir palete yerleştirildiğinden emin olun. Bu, lehim toplarının ve soketlerin oksidasyon sürecini geciktirecektir.

Lehim bilyesinin çıkarılması

BGA bileşenleri için lehim bilyesinin çıkarılması kritik bir işlemdir. Lehim bilyesi düzgün bir şekilde çıkarılmazsa BGA bileşeni hasar görebilir ve dağınık bir ürün ortaya çıkabilir. Neyse ki, BGA bileşenlerinden topu çıkarmanın birkaç yolu vardır. İlk yol, kalan lehimi çıkarmak için vakum kullanmaktır. İkinci bir yol ise suda çözünen bir macun akısı kullanmaktır.

Çoğu durumda, en uygun maliyetli yöntem yeniden bilyalama işlemidir. Bu işlemde kurşunsuz lehim bilyeleri kurşunlu olanlarla değiştirilir. Bu yöntem BGA bileşeninin işlevselliğini korumasını sağlar. Bu işlem, özellikle bileşen düzenli olarak kullanılıyorsa, kartın tamamını değiştirmekten çok daha verimlidir.

İşleme başlamadan önce bir teknisyen BGA bileşenlerini araştırmalıdır. Cihaza dokunmadan önce, lehim toplarının boyutunu ve şeklini değerlendirmesi gerekir. Ayrıca, kullanacağı lehim pastası ve şablon türünü de belirlemelidir. Dikkate alınması gereken diğer faktörler lehim türü ve bileşenlerin kimyasıdır.

Lehim bilyası yeniden toplanması

BGA bileşenlerinin lehim topunun yeniden toplanması, elektronik montajların yeniden işlenmesini içeren bir süreçtir. Bu işlem yeniden akış lehimleme ve bir şablon gerektirir. Şablon, lehim bilyelerinin sığması için deliklere sahiptir. En iyi sonuçları elde etmek için şablon yüksek kaliteli çelikten yapılır. Şablon bir sıcak hava tabancası veya bir BGA makinesi ile ısıtılabilir. Şablon, BGA reballing işlemi için gereklidir ve lehim toplarının doğru konumlarına oturmasını sağlamaya yardımcı olur.

Bir BGA bileşenini yeniden bilyelemeden önce, PCB'yi işlem için hazırlamak önemlidir. Bu, bileşenlerin zarar görmesini önleyecektir. İlk olarak PCB önceden ısıtılır. Bu, lehim toplarının erimiş hale gelmesini sağlayacaktır. Ardından, robotik bilye sökme sistemi bir matris tepsisinden bir sıra bileşen alır. Lehim toplarına akı uygular. Daha sonra programlanmış bir ön ısıtma aşamasından geçer. Bundan sonra, dinamik bir lehim dalgası istenmeyen topları karttan çıkarır.

Çoğu durumda, bir BGA bileşenini yeniden toplamak, tüm kartı değiştirmekten daha ekonomiktir. Bir kartın tamamını değiştirmek, özellikle de düzenli olarak çalışan makinelerde kullanılıyorsa maliyetli olabilir. Bu gibi durumlarda, yeniden toplamak en iyi seçenektir. Lehim bilyelerinin yenileriyle değiştirilmesi sayesinde kart daha yüksek sıcaklıklara dayanabilir ve bu da kartın ömrünü uzatır.

Methods For Detecting PCB Failures

Methods For Detecting PCB Failures

There are several ways to detect PCB failures. Among these methods are X-rays, Slice analysis, and Optical microscopy. Each of these methods is useful for identifying and assessing the extent of PCB damage. However, not all of these methods are suitable for every PCB failure. For example, electrostatic discharge damage is difficult to detect. It affects components by softening the solder and causing multiple shorts. In order to avoid this problem, the manufacturing process must be monitored minutely.

Röntgen ışınları

PCB X-rays are a useful tool for detecting PCB failures. These images can reveal problems such as voids and solder traces. These problems can occur due to escaping gases or overheating of solder.

Slice analysis

Slice analysis is a method used to analyze the microstructure of PCBs. It can help detect a wide variety of PCB failures. Slice analysis involves cutting the PCB into vertical and horizontal sections and examining their cross-sectional characteristics. It can identify many different PCB failures, such as delamination, bursting, and poor wetting. This information can be useful for quality control in the future.

Optical microscopy

Optical microscopy can be an effective method for detecting PCB failures. It provides detailed images of the failure sites, and it can be used to detect nonconformities and identify contamination sources. The method is also useful in documenting samples as they are received.

ALT

The ALT method for PCB failure detection is a more direct approach to measuring solder joints and solder paste deposition. This technology uses a laser beam to scan a PCB assembly and measure reflectivity of various components. The measured value is then compared to a board’s standard specifications to determine if there are any faults.

Micro-infrared analysis

PCB failures are typically caused by defects on the solder joints. By determining the cause of the defect, manufacturers can take necessary steps to prevent recurrence. These measures may include eliminating solder paste contamination, making sure that the PCB has the correct aspect ratio, and minimizing PCB reflow time. There are a variety of methods used to analyze PCB failures, ranging from simple electrical measurements to analyzing sample cross-sections under a microscope.

ALT measures solder joint deposition

ALT (Aligned Light Transmitter) is a newer technology for measuring the height and shape of solder joints and solder paste deposition on PCBs. This technology is more precise and allows for a fast measurement. The ALT system uses multiple light sources, such as cameras or programmable LEDs, to illuminate the solder joint components. The amount of light reflected from each component is measured using the power of the beam. However, secondary reflection can cause an error in measurement, since the beam may reflect from more than one position.

Elektrostatik boşalma

The Electrostatic Discharge (ESD) method is used to detect PCB failures. An ESD is the result of extreme electrical stress, which can cause catastrophic failure and hidden damage. It can occur for a variety of reasons, including high current density, an increased electric field gradient, and localized heat formation. The resulting damage is hard to detect and can cause major product failures. PCB assemblies are most susceptible to ESD when they are in contact with other charge-carrying objects.