Az áramköri lap galvanizálásának fő négy módszere

Az áramköri lap galvanizálásának fő négy módszere

Electroplating on a circuit board can be done in various ways. There are Thru-hole, Cleaning, and Electroless methods. Each method is used to cover different areas of the board. The methods differ slightly from one another, so it’s best to understand the differences in order to make a good decision.

Thru-hole plating

Thru-hole electroplating is a process for electroplating copper on circuit boards. This process involves a series of baths in which the boards are immersed in a chemical solution. This process aims to coat the entire board with copper. During the process, the boards are cleaned to remove all drilling residue, such as burrs and residual resin inside the holes. The fabricators use various chemical agents and abrasive processes to remove any contaminants.

Thru-hole electroplating involves a special low-viscosity ink that forms a highly adherent and conductive film on the inner walls of the hole. This process eliminates the need for multiple chemical treatments. It is an easy process because it only requires one application step followed by thermal curing. The resulting film covers the entire interior wall of the hole. Moreover, its low viscosity allows it to bond to even the most thermally polished holes.

As a result, it is vital to choose a reputable company that offers PCB fabrication. After all, a substandard board may disappoint customers and cost a company money. Besides, it is also necessary to have high-quality processing equipment in the board manufacturing process.

To start the process, you must cut a laminate slightly larger than the size of your board. Afterwards, you must drill the hole in the board with an exact drill bit. Do not use a larger drill bit, as it will destroy the copper in the hole. You can also use tungsten carbide drill bits to make a clean hole.

Electroless plating

Electroless plating is a process that is widely used in the production of printed circuit boards. The main purpose of electroless plating is to increase the copper layer’s thickness, which is usually one mil (25.4 um) or more. This method involves the use of special chemicals to increase the copper layer’s thickness throughout the printed circuit board.

The nickel that is applied in electroless plating acts as a barrier to prevent copper from reacting with other metals, including gold. It is deposited onto the copper surface using an oxidation-reduction reaction, and the result is a layer of electroless nickel that is between three and five microns thick.

Unlike the electroplating method, electroless plating is a fully automated process and does not require any external current supply. The process is autocatalytic and is performed by immersing the circuit board in a solution containing a source metal, a reducing agent, and a stabiliser. The resulting metallic ions attract one another and release energy through a process known as charge transfer. The process can be controlled using a number of parameters, each of which has a specific role to play on the outcome.

The electroless plating process has numerous benefits, including improved deposit quality, uniformity regardless of substrate geometry, and excellent corrosion, wear, and lubricity. Electroless plating also enhances the solderability and ductility of components, and has numerous applications in electronics.

Cleaning plating

Cleaning electroplating on circuit boards requires special care. The first step is to thoroughly wet the board. Then, use a hand brush to scrub the contaminated area. The second step is to rinse the board thoroughly, so that any remaining solvated flux flows off completely. In this way, the board will be thoroughly clean.

The next step involves removing the resist from the board. This step is essential to ensuring good electrical connection. A copper solvent is used to dissolve the resist on the board. Once the copper is exposed, it will conduct electricity. This process will remove the smear and ensure that the board is clean and ready to be plated.

Cleaning electroplating in circuit boards involves rinsing the board and using an acidic solution that contains ions of nickel and other transition metals. In addition, a reducing agent, such as dimethylamineborane, is used. Butyl Carbitol and other conventional cleaning agents are also used.

For the most precise cleaning, vapor degreasing can be used. The PCBs are immersed in a solvent and rinsed by its vapors. However, this procedure can be risky if the solvent is flammable. To avoid flammability, it is recommended to use nonflammable flux removers. You can also use cotton or foam swabs saturated with mild solvents. Most of these solvents are water-based.

Hogyan végezzen ESD-védelmet az SMT-szerelés során?

Hogyan végezzen ESD-védelmet az SMT-szerelés során?

Az elektrosztatikus károsodás a készülék meghibásodásának egyik fő oka. Az elektronikai eszközök 10%-jénél közvetlen meghibásodást okoz. Az SMT-szerelési folyamat során az egész SMT-szerelési folyamat során problémákat okozhat. Szerencsére vannak módok arra, hogy megvédje magát ettől a problémától.

Statikus védőanyag

Az elektronikus alkatrészeket feltétlenül meg kell védeni az elektrosztatikus kisüléstől (ESD), amely károsodáshoz és meghibásodáshoz vezethet. Statikus elektromosság bármikor és bárhol keletkezhet, és gyakran a súrlódás okozza. Fontos az elektronikus eszközök védelme az SMT-szerelési folyamat során, hogy azok megőrizhessék optimális teljesítményüket és megbízhatóságukat. Statikus védőanyagot kell használni az összeszerelési folyamat kezdetétől, és a befejezés után is folytatni kell.

A gyártási környezet RH-értéke is fontos szerepet játszik az ESD kialakulásában, ezért a gyár RH-értékét gondosan ellenőrizni kell. Ha az RH-t nem megfelelően tartják fenn, az nagyon magas ESD-szinteket eredményezhet. Az is ajánlott, hogy a magas statikus elektromosságot tartalmazó anyagokat tartsa távol a szerelőszalagtól. Az elektronika ESD elleni védelme érdekében az összeszerelési folyamat során statikus töltést védő anyagokat kell használni.

ESD-elnyomó alkatrészek

Az SMT-szerelési folyamat során az ESD okozta károk megelőzése érdekében az alkatrészeket ESD-álló zsákokban kell tárolni és szállítani. Az ilyen munkákhoz erősen ajánlott a professzionális összeszerelőket igénybe venni.

A statikus elektromosság megelőzése érdekében az összeszerelő munkatársaknak antisztatikus ruházatot kell viselniük. Kerülniük kell továbbá az alkatrészek éles tárgyakkal való érintését. Az antisztatikus ruházat az elektronikus eszközök földelő áramköreként is működhet. A statikus elektromosság kockázatának csökkentése érdekében az összeszerelő személyzetnek a vezető ruházat viselése mellett védőruhát és cipőt is kell viselnie. Fontos továbbá a szigetelőanyagok használatának minimalizálása.

A statikus elektromosság a fém alkatrészek miatt alakulhat ki, amelyek elektrosztatikus töltést vezetnek. Indukció vagy a test statikus feltöltődése is okozhatja. Hatásai károsak lehetnek, különösen az elektronikus alkatrészekre.

Statikus védőhab

Az elektrosztatikus kisülés (ESD) költséges károkat okozhat az elektronikában. Bár vannak módszerek ennek megelőzésére, nem lehet minden eszközt megóvni az ESD hatásaitól. Szerencsére az antisztatikus habok, más néven elektrosztatikus kisülés elleni habok az érzékeny alkatrészek védelmére rendelkezésre állnak.

Az ESD-vel kapcsolatos kockázatok minimalizálása érdekében használjon védőcsomagolást az elektronikus alkatrészekhez. Ügyeljen arra, hogy a csomagolás megfelelő felületi és térfogati ellenállással készüljön. Ellenállnia kell továbbá a szállítás közbeni mozgásból eredő triboelektromos töltéshatásoknak. Az elektrosztatikusan érzékeny alkatrészeket általában fekete vezető habszivacsban vagy antisztatikus zsákban szállítják. Az antisztatikus zsákok részben vezető műanyagot tartalmaznak, amely Faraday-kalitkaként működik.

A statikus elektromosság gyakori probléma az SMT összeszerelési folyamat során. Ez a súrlódás mellékterméke, és az alkatrészek meghibásodását okozhatja. Az emberi mozgás statikus elektromosságot generál, amely néhány száz volt és több ezer volt között lehet. Ez a károsodás hatással lehet az SMT összeszerelésből származó elektronikus alkatrészekre, és idő előtti meghibásodáshoz vezethet.

ESD táskák

Ha elektronikai termékekkel dolgozik, fontos, hogy az ESD-védelemmel ellátott csomagolást használjon az érzékeny elemek szállításakor és tárolásakor. Az ESD-védelem segíthet minimalizálni az áramütés és az égési sérülések kockázatát, miközben a szállítás és a tárolás védelmét is biztosítja. A védőcsomagolás akkor is megvédheti az alkatrészeket és komponenseket, amikor nem használják őket, például amikor a gyárba és a gyárból szállítják őket.

A nyomtatott áramköri lapok kezelése során fontos, hogy kövesse a gyártó utasításait, és tartsa be a gyártó iránymutatásait. Ez azért lényeges, mert a rossz ESD-védelmi terv az elektronikus alkatrészek károsodását eredményezheti. Ha nem biztos abban, hogyan kell megfelelően kezelni az alkatrészeket az összeszerelési folyamat során, kérdezze meg egy szakembert.

Mindkettő kombinációja

Az SMT-szerelés során a statikus elektromosság elkerülése érdekében elengedhetetlen az elektronika földelése. A földelés kétféle lehet, lágy földelés és kemény földelés. A lágy földelés az elektronikus eszközök alacsony impedanciájú földhöz való csatlakoztatását jelenti, míg a kemény földelés az elektronikus alkatrészek nagy impedanciájú földhöz való csatlakoztatását jelenti. Mindkét típusú földelés megakadályozhatja a statikus elektromosságot és megvédheti az elektronikus alkatrészeket a károsodástól.

Az ESD az elektronikai iparban a károk egyik fő forrása. Az ESD teljesítményromlást, sőt, akár alkatrészhibát is okozhat. Becslések szerint az összes elektronikai meghibásodás 8%-33%-ét az ESD okozza. Az ilyen típusú károk ellenőrzése javíthatja a hatékonyságot, a minőséget és a nyereséget.

How Do We Distinguish the DC Resistance and Dynamic Resistance of a Semiconductor Diode?

How Do We Distinguish the DC Resistance and Dynamic Resistance of a Semiconductor Diode?

In order to understand how the resistance of a semiconductor diode varies with current and voltage, we need to distinguish the two different types of resistance. The two types of resistance are static and dynamic. Dynamic resistance is much more variable than static resistance, so we must distinguish the two with care.

Zener impedance

The Zener impedance of semiconductor diode is a measure of the apparent resistance of a semiconductor diode. It is calculated by measuring the ripple in the input and the change in the source current. For example, if the source current changes from three to five milliamps to seven milliamps, the ripple in the output will be about three-half milliamps. The dynamic resistance of a zener diode is equal to 14 ohms.

The breakdown of the zener impedance of a semiconductor diode occurs when a reverse biased voltage is applied to it. At this voltage, the electric field in the depletion region is strong enough to pull electrons from the valence band. The free electrons then break the bond with their parent atom. This is what causes the flow of electric current through a diode.

When working with a buck circuit, the zener impedance of a semiconductor diode is an important parameter. It can affect the efficiency of a simple buck circuit. If it is too high, the diode may fail to work. If this happens, it is best to reduce the current.

The zener effect is most prominent when the voltage of a diode is below 5.5 volts. At higher voltages, the avalanche breakdown becomes the primary effect. The two phenomena have opposite thermal characteristics, but if the zener diode is nearer to six volts, it can perform very well.

Analyze the Role of Layered Stack Design in Suppressing EMI

Analyze the Role of Layered Stack Design in Suppressing EMI

Layered stack design is the process of using a PCB with many layers to improve signal integrity and reduce EMI. A general purpose high-performance 6-layer board, for example, lays the first and sixth layers as ground and power layers. In between these two layers is a centered double microstrip signal line layer that provides excellent EMI suppression. However, this design has its disadvantages, including the fact that the trace layer is only two layers thick. The conventional six-layer board has short outer traces that can reduce EMI.

Impedance analysis tool

If you’re looking for a PCB design tool to minimize your PCB’s susceptibility to EMI, you’ve come to the right place. Impedance analysis software helps you determine the correct materials for your PCB and determine which configuration is most likely to suppress EMI. These tools also allow you to design your PCB’s layered stack in a way that minimizes the effects of EMI.

When it comes to PCB layered stack design, EMI is often a major concern for many manufacturers. To reduce this problem, you can use a PCB layered stack design with a three to six-mil separation between adjacent layers. This design technique can help you minimize common-mode EMI.

Arrangement of plane and signal layers

When designing a PCB, it is vital to consider the arrangement of plane and signal layers. This can help to minimize the effect of EMI. Generally, signal layers should be located adjacent to power and ground planes. This allows for better thermal management. The signal layer’s conductors can dissipate heat through active or passive cooling. Similarly, multiple planes and layers help to suppress EMI by minimizing the number of direct paths between signal layers and power and ground planes.

One of the most popular PCB layered stack designs is the six-layer PCB stackup. This design provides shielding for low-speed traces and is ideal for orthogonal or dual-band signal routing. Ideally, higher-speed analog or digital signals should be routed on the outer layers.

Impedance matching

PCB layered stack design can be a valuable tool in suppressing EMI. The layered structure offers good field containment and set of planes. The layered structure allows for low-impedance connections to GND directly, eliminating the need for vias. It also allows higher layer counts.

One of the most critical aspects of PCB design is impedance matching. Impedance matching allows the PCB traces to match the substrate material, thus keeping the signal strength within the required range. Signal integrity is increasingly important as switching speeds increase. This is one of the reasons why printed circuit boards can no longer be treated as point-to-point connections. Since the signals are moving along traces, the impedance can change significantly, reflecting the signal back to its source.

When designing PCB layered stacks, it is important to consider the inductance of the power supply. High copper resistance on the power supply increases the likelihood of differential mode EMI. By minimizing this problem, it is possible to design circuits that have fewer signal lines and shorter trace lengths.

Controlled impedance routing

In the design of electronic circuits, controlled impedance routing is an important consideration. Controlled impedance routing can be achieved by using a layered stack up strategy. In a layered stack up design, a single power plane is used to carry the supply current instead of multiple power planes. This design has several advantages. One of these is that it can help avoid EMI.

Controlled impedance routing is an important design element for suppressing EMI. Using planes separated by three to six mils can help contain magnetic and electric fields. Furthermore, this type of design can help lower common-mode EMI.

Protection of sensitive traces

Layered stack design is a critical element in suppressing EMI. A good board stack-up can achieve good field containment and provide a good set of planes. But, it must be designed carefully to avoid causing EMC problems.

Generally, a 3 to 6-mil separated plane can suppress high-end harmonics, low transients, and common-mode EMI. However, this approach is not suitable for suppressing EMI caused by low-frequency noises. A three to six-mil-spaced stack up can only suppress EMI if the plane spacing is equal to or greater than the trace width.

A high-performance general-purpose six-layer board design lays the first and sixth layers as the ground. The third and fourth layers take the power supply. In between, a centered double microstrip signal line layer is laid. This design provides excellent EMI suppression. However, the disadvantage of this design is that the trace layer is only two layers thick. Therefore, the conventional six-layer board is preferred.

3 Tips For PCB Drawing Beginners

3 Tips For PCB Drawing Beginners

For beginners, it is important to follow a few basic principles when drawing PCBs. These include the use of multiple grids, keeping parts 50 meters apart, and using 45-degree angle traces. The ancients once said that ice is difficult to break, but you can break it with persistence and perseverance.

Basic principles

When creating a PCB, it is critical to know the basic principles of PCB drawing. These guidelines address important topics like the size and shape of a PCB. They also address issues like the placement of components and interconnections. The size and shape of your PCB should be appropriate for the manufacturing process that it will go through. Additionally, you need to consider reference points that will be necessary during the PCB manufacturing process, such as holes for fixtures or crossed marks for optical sensors. It is important to ensure that these points do not interfere with components.

A proper arrangement of components on the board should result in an efficient flow of power and data. This means that the wires should be arranged as evenly as possible. The wiring area should be at least one mm from the edge of the PCB board and around any mounting holes. Signal lines should be radial and not appear as loopbacks.

45 fokos szögű nyomvonalak használata

If you are a beginner in PCB drawing, you should be wary of using 45-degree angle traces. Those traces may take up more space than other angles and aren’t ideal for all applications. However, 45 degree angles are a very valid design practice in many situations.

One of the major reasons for using 45-degree angles in PCB drawings is the safety factor. Because these traces are much narrower than standard traces, you shouldn’t make any sharp turns. This is because the board’s manufacturing process etches the outside corner of the board narrower. One simple solution to this problem is to use two 45-degree bends with a short leg in between. You can then put text on the top layer of the board to make it more clear which layer is which.

Another reason to use 45-degree angle traces is because the width of the traces will be less affected. The reason for this is that 90-degree angles result in etched tips, which can cause short circuits. Using 45-degree angle traces reduces the routing job for the manufacturer. With 45-degree angle traces, all copper on the board can be etched without any issues.

Using snap grids

Using snap grids for PCB drawing beginners can be very helpful. It allows you to easily adjust the layout and keeps components neat and symmetrical. Some advanced PCB design software has hotkeys to switch grid sizes. You can also switch to top-down or “through the board” orientations, which require viewing the bottom layer as mirror images. This approach should only be used as a last resort.

PCB drawing beginners can set the default Snap Grid size, which is usually 0.250″. In addition, users can change the snap grid’s spacing to 0.25 inches. However, it is recommended that you turn off the snap grid feature if you plan to connect traces to parts that have unusual pin spacing.