Top 3 Causes and Countermeasures of Solder Paste Deficiency in PCB Design
Top 3 Causes and Countermeasures of Solder Paste Deficiency in PCB Design
There are several causes and countermeasures for solder paste deficiency in a PCB design. These include cold solder joints, inaccurate placement, too much heat during soldering, and chemical leakage. Here are some of the most common causes and how to resolve them.
Cold solder joints
In order to avoid the formation of cold solder joints, PCB designers must design the PCB in such a way that all of the components are placed in similar orientations and have good component footprints. This helps to avoid problems with thermal imbalances and asymmetry in solder joints. Also, it is important to design PCBs in such a way that each component is positioned on a D-shaped pad. It is also important to avoid the use of tall components since they create cold zones in the PCB design. Moreover, components near the edge of the board are more likely to get hotter than those in the center.
A faulty solder joint can be a result of a variety of factors, including the lack of flux or a poorly bonded joint. A clean work area is essential for good solder joint quality. It is also important to re-tin the soldering tip to prevent oxidation.
Chemical leakage
If you are a designer of PCBs, you may be interested in learning how to avoid chemical leakage. This problem is caused by solder balls, which appear as small spheres of solder that adhere to the surface of a PCB’s laminate, resist, or conductor. Due to the heat generated, the moisture near the through holes in a PCB can turn to steam and extrude the solder.
Solder bridging is another problem caused by a deficiency of solder paste. When solder cannot separate from a lead before solidifying, it forms a short circuit. While the shorts are often invisible, they can wreak havoc on a component. Several factors can cause this problem, including the number of pins on a PCB, the distance between them, and the reflow oven’s setting. In some cases, a change in materials can also cause solder bridging.
Too much heat during soldering
Solder paste can be prone to deformities when it reaches a certain temperature during soldering. Too much heat during soldering can result in solder balling and discrete deformities. Too much solder paste can also lead to too much flux outgassing. These factors can contribute to solder balling and deformities in PCB design.
Solder paste should never interact with moisture or humidity. The solder mask must be correctly positioned and the stencil bottom should be cleaned regularly. Another common PCB design error is known as the tombstone effect, or “Manhattan effect,” caused by force imbalances during soldering. The effect resembles the shape of a tombstone in a cemetery. However, it represents a defunct PCB design with an open circuit.
Cleaning the material properly after drilling
Solder paste deficiency is the result of a material being improperly cleaned after drilling. Solder wire should be at the correct temperature and ideally be completely wetted with the pads and pins. If the solder is not adequately wetted, it may lead to the formation of a solder bridge or other defects. The right amount of solder is necessary to wet the pads and pins evenly. If it is not, it can form a metal oxide layer on the bonded object. This can be fixed by cleaning the material well and by using the right soldering iron.
Insufficient solder can cause several problems with the circuit board. Inadequate solder can cause a sand hole, broken line, “blow hole” or “solder joint void.” Insufficient solder paste can also lead to the removal of tin from components. It’s essential to avoid such problems by following the PCB design process.
Preventive measures
Solder bridging occurs when solder gets into a space it shouldn’t. Solder bridging can be prevented by using larger component leads. When pads are too small, the solder has to wet a larger area and flow a smaller volume up the lead. This results in solder balls that form and cause shorts. It is important to place pads at optimal positions and use proper solder paste in the soldering process.
A lack of solder paste on the board can also cause component leads to be warmer than pads because component leads have less thermal mass and a higher flow of air around them. Increasing the soak time of solder paste will prevent this issue and equalize temperatures across the assembly. It also reduces the tendency for solder to flow towards warmer surfaces. Another prevention method is to optimize the stencil design to minimize the amount of solder paste on trouble areas. In addition to using a stencil, ensuring that the components are not damaged before placement can help reduce solder paste in problematic areas. Copper balancing can also be used to even out the heating and cooling of the PCB.
Leave a Reply
Want to join the discussion?Feel free to contribute!