Come comprendere alcune fasi importanti della progettazione di schede PCB

Come comprendere alcune fasi importanti della progettazione di schede PCB

Se siete interessati a progettare una scheda PCB, dovete conoscere una serie di fasi importanti. Queste fasi comprendono l'ideazione, la definizione, la convalida e il posizionamento dei componenti. La comprensione di queste fasi vi aiuterà a realizzare il miglior progetto possibile.

Ideazione

La creazione di una scheda PCB efficace inizia con la definizione dello scopo del dispositivo. È essenziale far coincidere le dimensioni e i vincoli di altezza della scheda con i componenti previsti. Altre considerazioni riguardano la ESR dei componenti alle alte frequenze e la stabilità della temperatura. Inoltre, è necessario scegliere la larghezza e la spaziatura delle tracce. La mancata osservanza di questa regola generale può portare a un'esplosione dei costi.

Il processo di progettazione dei circuiti stampati inizia con l'ideazione, la definizione e la convalida. Questa fase è fondamentale e precede la progettazione di un prototipo o l'esecuzione di un progetto. Evidenzia la creatività del progettista e assicura che tutti i componenti hardware siano allineati e congruenti. Inoltre, consente la collaborazione incrociata tra i vari membri del team, con conseguente sinergia.

Definizione

La progettazione di un PCB è un processo complesso. Comprende la scelta dei materiali giusti per la base del PCB, la selezione di una regola di progettazione e la scelta delle dimensioni finali. Il PCB deve anche essere testato per garantire che funzioni correttamente nelle condizioni operative previste. Se la progettazione non viene eseguita correttamente, il progetto potrebbe fallire.

La prima fase della progettazione di un circuito stampato consiste nel creare una serie di progetti. Questa operazione viene eseguita tramite un software. I progetti servono come modello per la progettazione. Il progettista può anche utilizzare un calcolatore della larghezza delle tracce per determinare gli strati interni ed esterni. Le tracce di rame conduttivo e i circuiti sono contrassegnati con inchiostro nero. Le tracce sono note come strati nel progetto del PCB. Esistono due tipi di strati: quelli esterni e quelli interni.

Convalida

Le schede PCB vengono sottoposte a processi di validazione per garantire che siano state progettate correttamente. Questi test vengono eseguiti esaminando le strutture della scheda. Queste strutture comprendono sonde e connettori, nonché lo standard Beatty per i parametri dei materiali. Questi test vengono eseguiti per eliminare eventuali errori di progettazione, come le riflessioni.

Le schede PCB vengono quindi preparate per la produzione. Il processo dipende dallo strumento CAD utilizzato e dall'impianto di produzione. Di solito comporta la generazione di file Gerber, che sono disegni di ogni strato. Sono disponibili diversi strumenti di visualizzazione e verifica Gerber, alcuni dei quali sono integrati negli strumenti CAD, mentre altri sono applicazioni autonome. Un esempio è ViewMate, scaricabile e utilizzabile gratuitamente.

Il processo di validazione prevede anche il collaudo del dispositivo. Il progetto viene testato con un prototipo per garantire la risposta prevista. Inoltre, viene effettuata un'analisi del circuito per determinare se il progetto è stabile. I risultati di questo test determinano la necessità di eventuali modifiche. È necessario apportare alcune modifiche per migliorare il progetto e garantire che sia conforme alle specifiche del cliente.

Posizionamento dei componenti

Il posizionamento dei componenti sulle schede PCB può avvenire in molti modi. È possibile posizionarli sopra o sotto un altro componente, oppure utilizzare una combinazione di questi metodi. I posizionamenti possono essere resi ordinati allineando i componenti scegliendo Allinea in alto o Allinea in basso. È anche possibile distribuire uniformemente i componenti sulla scheda selezionandoli e facendo clic con il pulsante destro del mouse. È anche possibile spostare i componenti sul lato superiore o inferiore del PCB premendo L.

Nella progettazione di circuiti stampati, il posizionamento dei componenti è fondamentale. L'ideale sarebbe posizionare i componenti sul lato superiore della scheda. Tuttavia, se il componente ha una bassa dissipazione termica, può essere collocato sul lato inferiore. Si consiglia inoltre di raggruppare i componenti simili e di disporli in una fila uniforme. Inoltre, è opportuno posizionare i condensatori di disaccoppiamento in prossimità dei componenti attivi. Inoltre, è necessario posizionare i connettori in base ai requisiti di progetto.

Tensione di rottura del dielettrico

Sia che stiate progettando il vostro PCB, sia che vi stiate procurando un PCB da un produttore, ci sono diverse fasi che dovete conoscere. Alcune di queste fasi comprendono: la verifica della funzionalità dei componenti elettrici e del layout del PCB. Ciò avviene sottoponendo il PCB a una serie di test in conformità agli standard IPC-9252. Due dei test più comuni sono quelli di isolamento e di continuità del circuito. Questi test verificano l'eventuale presenza di disconnessioni o cortocircuiti nella scheda.

Una volta completato il processo di progettazione, è importante considerare l'espansione termica e la resistenza termica dei componenti. Queste due aree sono importanti perché l'espansione termica dei componenti della scheda aumenta quando il calore aumenta. La Tg dei componenti di una scheda deve essere sufficientemente alta per evitare che i componenti vengano danneggiati o deformati. Se la Tg è troppo bassa, i componenti possono guastarsi prematuramente.

Misure di interferenza nella progettazione di circuiti stampati

Misure di interferenza nella progettazione di circuiti stampati

If you’re looking for interference measures in PCB circuit board design, you’ve come to the right place. These measures include shielding, grounding, transmission lines, and low-pass filters. These measures can help prevent EMI and noise, as well as improve the performance of your electronic products.

Shielding

Shielding is an important part of the PCB circuit board design process. It prevents EMI, or electromagnetic interference, from interfering with the circuit board. EMI is caused by electrical signals, which are often higher in frequency than the circuit board itself. Metal shields or cans on the circuit board help to block this kind of interference. Shielding is an important aspect of PCB design, regardless of whether the board is designed for analog circuitry or digital.

Typically, the shielding material is made up of several copper layers. These copper layers are connected to one another with stitched vias, and the shielding layer is sandwiched between them. A solid copper layer offers higher shielding, while cross-hatched copper layers provide shielding without compromising flexibility.

Shielding materials are often made of copper or tin. These metals are useful for shielding circuits, since they isolate them from the rest of the board. Shielding can also change the thickness of a flexible circuit. As a result, it can lower the bend capacity. Shielding materials should be chosen carefully, because there are certain limits to how flexible a circuit board can be.

Grounding

Grounding in PCB circuit board design is important to maintain signal integrity and minimize EMI. A reference ground plane provides a clean return path for signals and shields high-speed circuits from EMI. Proper PCB grounding can also help with power circuits. However, there are several factors to consider in PCB circuit design before you begin.

First, isolate analog ground points from the power plane. This can prevent voltage spikes on the power plane. In addition, distribute decoupling capacitors throughout the board. For digital components, you should use a decoupling capacitor of the same value as the power plane. Second, avoid distributing the ground plane on more than one layer, which will increase the loop area.

Ground planes should not be too close to the electronic components. Electromagnetic induction (EMI) causes signals to be coupled if two traces are placed too close together. This phenomenon is known as crosstalk. Ground planes are designed to minimize crosstalk and reduce EMI.

Transmission lines

Transmission lines are important to PCB circuit board design because they can affect the functionality of the board. A transmission line’s properties include characteristic impedance and propagation delay. When these parameters are not controlled, they may cause signal reflections and electromagnetic noise. This will reduce the signal quality and can compromise the integrity of the circuit board.

Transmission lines can be of different shapes, including striplines and coplanar waveguides. Each type of transmission line has a characteristic impedance, which is determined by the width and thickness of the conductive strip. Unlike other types of transmission lines, striplines don’t require a single ground plane, as their conductive strip may be embedded between two different layers.

Another type of transmission line is microstrips, which are typically used on the outermost layer of a PCB circuit board. These types of traces offer high characteristic impedance, which varies with frequency. This difference in impedance leads to reflection of the signal, which travels the opposite direction. In order to avoid this effect, the impedance must be equal to the output impedance of the source.

Low-pass filters

Low-pass filters are used to filter signals, such as radio waves, at low frequencies. Using capacitors as low-pass filters in a PCB circuit board design can improve the performance of a circuit. However, it is not always possible to use Rogers 4003 printed circuit board material, and it is not always available in the market.

Ferrites are commonly used as low-pass filters, but this material is susceptible to saturation when it is exposed to DC current. As such, it is not always possible to use it as a low-pass element if the circuit impedance is higher than the ferrite’s impedance.

How to Use PCB Layered Stackup to Control EMF Radiation

How to Use PCB Layered Stackup to Control EMF Radiation

A PCB layered stackup is one of the best ways to reduce EMC and control EMF emissions. However, it is not without risks. The design of a PCB with two signal layers could result in an insufficient amount of board space for routing the signals, cutting up the PWR plane. It is therefore better to put the signal layers between two stacked conductive planes.

Using a 6-layer PCB stackup

A 6-layer PCB stackup is effective for decoupling high-speed signals and low-speed signals, and can also be used to improve power integrity. By placing a signal layer between the surface and the interior conductive layers, it can effectively suppress EMI.

The placement of the power supply and ground on the 2nd and fifth layers of the PCB stackup is a critical factor in controlling EMI radiation. This placement is advantageous because the power supply’s copper resistance is high, which can affect the control of common-mode EMI.

There are different configurations of 6-layer PCB stackups that are useful for different applications. A 6-layer PCB stackup should be designed for the appropriate application specifications. Then, it must be thoroughly tested to ensure its functionality. After this, the design will be turned into a blue print, which will guide the manufacturing process.

PCBs used to be single-layer boards with no vias and clock speeds in the hundred kHz range. These days, they can contain up to 50 layers, with components nestled between layers and on both sides. Signal speeds have increased to over 28 Gb/S. The benefits of solid-layer stackup are numerous. They can reduce radiation, improve crosstalk, and minimize impedance issues.

Using a core-laminated board

Using a core-laminated PCB is an excellent way to protect electronics from EMI radiation. This type of radiation is caused by fast-changing currents. These currents form loops and radiate noise when they change rapidly. In order to control the radiation, you should use a core-laminated board that has a low dielectric constant.

EMI is caused by a variety of sources. The most common is broadband EMI, which occurs over radio frequencies. It is produced by a number of sources, including circuits, power lines, and lamps. It can damage industrial equipment and reduce productivity.

A core-laminated board can include EMI reducing circuits. Each EMI reducing circuit comprises a resistor and a capacitor. It can also include a switching device. The control circuit unit controls each EMI reducing circuit by sending selection and control signals to the EMI-reducing circuits.

Impedance mismatching

PCB layered stackups are a great way to improve EMI control. They can help contain electrical and magnetic fields while minimizing common-mode EMI. The best stackup has solid power and ground planes on outer layers. Connecting components to these planes is faster and easier than routing power trees. But the trade-off is increased complexity and manufacturing costs. Multilayer PCBs are expensive, but the benefits may outweigh the trade-off. To get the best results, work with an experienced PCB supplier.

Designing a PCB layered stackup is an integral part of the signal integrity process. This process requires careful consideration of mechanical and electrical performance requirements. A PCB designer works closely with the fabricator to create the best possible PCB. Ultimately, the PCB layer stackup should be able to route all signals successfully, keep signal integrity rules intact, and provide adequate power and ground layers.

A PCB layered stack-up can help reduce EMI radiation and improve signal quality. It can also provide a decoupling power bus. While there is no one solution to all EMI issues, there are several good options for optimizing PCB layered stacks.

Trace separation

One of the best ways to control EMI radiation is to use layer stack up in PCB designs. This technique involves placing the ground plane and signal layers next to each other. This allows them to act as shields to the inner signal layers, which helps reduce common-mode radiation. Moreover, a layered stackup is much more efficient than a single-plane PCB when it comes to thermal management.

In addition to being effective in containing EMI radiation, a PCB layered stack design also helps improve component density. This is done by ensuring that the space around the components is larger. This can also reduce common-mode EMI.

To reduce EMI radiation, a PCB design should have four or more layers. A four-layer board will produce 15 dB less radiation than a two-layer board. It is important to place the signal layer close to the power plane. The use of good software for PCB design can aid in choosing the right materials and performing impedance calculations.

How to Solder the Chip Components

How to Solder the Chip Components

Hand soldering

Hand soldering involves applying heat and pressure to the component to form a strong bond. Unlike wave or reflow soldering machines, hand soldering is done by an individual with soldering iron and a soldering station. Hand soldering can be performed on smaller components or for repair and rework.

To begin soldering, hold the soldering iron tip on the chip’s lead or contact point. Next, touch the tip of the solder wire to the lead. Then, heat the lead and solder until the solder flows. Ensure that the solder covers the entire lead or contact point. To prevent tombstoneing, don’t hold heat on one side of the chip for too long. Otherwise, the solder will reflow onto the opposite side.

The hand soldering process is generally the final step of prototype assembly. When using a Thermaltronics soldering tool, you can finish fine details on both through-hole and surface-mount components. When using hand soldering, it is best to use a temperature-controlled iron. Using a non-temperature-controlled iron will not produce reliable electrical joints.

Through-hole soldering

Through-hole soldering is a process that entails putting together a component with lead wires. Lead wires are inserted into the holes using a plier, which is held against the body of the component. It is important to apply gentle pressure on the leads as they are inserted into the through-holes. This process ensures that the leads of the chip components do not become overstretched. Excessive stretching may affect the placement of other components on the PCB. Additionally, it can affect the appearance of the entire through-hole soldering process.

Before soldering, it is important to clean the chip component’s surface. To clean a chip component, you can use a 3M Scotch-Brite Pad or sine grade steel wool. It is important to use the correct soldering flux as water-soluble flux can oxidize the PCB or through-hole component.

Lead-free soldering

Lead-free soldering is a process that uses lead-free solder and a higher-wattage soldering iron. To achieve optimal performance, soldering temperatures must be high enough to transfer enough heat to the chip component. The temperature required depends on the component’s volume, thermal mass, and board tolerances.

The first step to lead-free soldering is determining if the chip components are compatible with lead-free solder. The process is not without complications. Some chip components are coated with a tin-lead alloy for solderability. However, this type of coating violates environmental legislation. Fortunately, some chip manufacturers have found ways to use lead-free solder with tin-lead components. This is known as backward compatibility.

Another way to make chip components lead-free is to use nickel-lead. Nickel-lead has been used for years with tin-lead solder. Another option is Ni-Pd-Au solder. However, Ni-Pd-Au is not wettable in the same way as tin.

Flux in lead-free solder

Flux is a pre-processing agent used during the soldering process. Flux promotes metallurgical bonds between chip components, so the solder joints will not break or fluctuate in response to stress. It also removes oxidation from surfaces, which facilitates wetting, the process of solder flowing over the surface.

Flux residues can lead to corrosion and dendritic growth on PCB assemblies. After soldering chip components, the residues should be cleaned off with a good flux remover. For best results, angle the board while cleaning it so that excess solvent runs off the board. A lint-free wipe or a horsehair brush can be used to scrub the board gently.

Flux is an important component of lead-free solder. It cleans the metal surface to ensure a good metallurgical bond. Bad solder joints can lead to costly component failures. Luckily, flux is a chemical cleaning agent that can be applied before soldering, and during the process itself.

Cleaning excess solder

When soldering chip components, it’s often necessary to clean excess solder from them. But it can be difficult to remove the solder that has already been applied. Once it’s adhered to the component, the solder will have already been heated two or three times. Each reheat changes the physical composition of the metal. As a result, the solder becomes increasingly brittle. To avoid this, it’s best to remove the old solder and replace it with a new one.

Another option is to use a braid of solder to remove excess solder from the chip component. To do this, place a braid of solder over the component, hold the soldering iron against the braid, and wait for a few seconds. Afterwards, remove the solder braid.