PCB 기판 설계의 몇 가지 중요한 단계를 이해하는 방법

PCB 기판 설계의 몇 가지 중요한 단계를 이해하는 방법

If you are interested in designing a PCB board, there are a number of important steps that you must know. These steps include Ideation, Definition, Validation, and Placement of components. Understanding these steps will help you make the best design possible.

Ideation

Creating an effective PCB board design starts with defining the purpose of the device. It is essential to match the board’s dimensions and height constraints with the intended components. Other considerations include the components’ ESR at high frequencies and temperature stability. In addition, it is necessary to choose the proper trace width and spacing. Failure to adhere to this general rule can lead to an explosion of costs.

The PCB design process begins with ideation, definition, and validation. This step is critical and occurs before designing a prototype or executing a design. It highlights the designer’s creativity and makes sure that all hardware components are aligned and congruent. It also enables cross-collaboration among the various team members, resulting in synergy.

Definition

The design of a PCB is a complex process. It includes choosing the right materials for the PCB base, selecting a design rule, and selecting the final dimensions. The PCB must also be tested to ensure that it will function properly under the intended operating conditions. If the design is not done correctly, the project could end in failure.

The first step in PCB design is to create a set of blueprints. This is done through computer software. The blueprints serve as a model for the design. The designer can also use a trace width calculator to determine the inner and outer layers. The conductive copper traces and circuits are marked in black ink. The traces are known as layers in the PCB design. There are two types of layers, the outer and the inner.

Validation

PCB boards go through validation processes to ensure they are designed correctly. These tests are performed by examining the board’s structures. These structures include probes and connectors, as well as the Beatty standard for material parameters. These tests are performed in order to eliminate any design errors, such as reflections.

The PCB boards are then prepared for manufacturing. The process depends on the CAD tool used and the manufacturing facility. It usually involves the generation of Gerber files, which are drawings of each layer. There are several Gerber viewer and verification tools available, some of which are built into CAD tools, while others are standalone applications. One example is ViewMate, which is free to download and use.

The validation process also involves testing the device. The design is tested with a prototype to ensure it meets the expected response. In addition, it includes an analysis of the circuit to determine if the design is stable. The results of this test determine if any changes are required. Some modifications should be made in order to improve the design and ensure that it meets the specifications of the customer.

Placement of components

Placement of components on PCB boards can be done in many ways. You can place them above or below another component, or you can use a combination of these methods. Placements can be made tidy by aligning components by choosing Align Top or Align Bottom. You can also evenly distribute components on the board by selecting components and right-clicking on them. You can also move components to the top or bottom side of the PCB by pressing L.

When designing PCBs, placement of components is crucial. Ideally, components are placed on the top side of the board. However, if the component has a low thermal dissipation, then it can be placed on the bottom side. It is also recommended to group similar components together and place them in an even row. Moreover, you should also place decoupling capacitors in close proximity to active components. In addition, you should place connectors according to the design requirements.

Dielectric breakdown voltage

Whether you’re designing your own PCB or sourcing a PCB from a manufacturer, there are several steps that you should know about. Some of these steps include: testing the PCB’s electrical components and layout for functionality. This is done by running it through a battery of tests in accordance with IPC-9252 standards. Two of the most common tests are isolation and circuit continuity tests. These tests check whether there are any disconnections or shorts in the board.

After the design process is complete, it’s important to consider the thermal expansion and thermal resistance of the components. These two areas are important because the thermal expansion of the board components increases when it gets hotter. The Tg of a board’s components must be high enough to prevent the components from being damaged or deformed. If Tg is too low, it can cause the components to fail prematurely.

PCB 회로 기판 설계의 간섭 측정

PCB 회로 기판 설계의 간섭 측정

PCB 회로 기판 설계에서 간섭 대책을 찾고 계신다면 제대로 찾아 오셨습니다. 이러한 조치에는 차폐, 접지, 전송 라인 및 저역 통과 필터가 포함됩니다. 이러한 조치는 전자파 및 노이즈를 방지하고 전자 제품의 성능을 개선하는 데 도움이 될 수 있습니다.

차폐

차폐는 PCB 회로 기판 설계 프로세스에서 중요한 부분입니다. 차폐는 전자파 간섭(EMI)이 회로 기판에 간섭하는 것을 방지합니다. EMI는 회로 기판 자체보다 주파수가 높은 전기 신호로 인해 발생합니다. 회로 기판의 금속 실드나 캔은 이러한 종류의 간섭을 차단하는 데 도움이 됩니다. 차폐는 보드가 아날로그 회로용으로 설계되었든 디지털용으로 설계되었든 관계없이 PCB 설계의 중요한 측면입니다.

일반적으로 차폐 재료는 여러 개의 구리 층으로 구성됩니다. 이러한 구리 층은 스티치 비아로 서로 연결되고, 차폐 층은 그 사이에 끼워져 있습니다. 솔리드 구리 층은 더 높은 차폐 효과를 제공하는 반면, 교차 해치 구리 층은 유연성을 저하시키지 않으면서 차폐 효과를 제공합니다.

차폐 재료는 종종 구리 또는 주석으로 만들어집니다. 이러한 금속은 회로를 보드의 나머지 부분과 분리하기 때문에 회로를 차폐하는 데 유용합니다. 차폐는 또한 플렉시블 회로의 두께를 변경할 수 있습니다. 결과적으로 굽힘 용량을 낮출 수 있습니다. 회로 기판의 유연성에는 일정한 한계가 있으므로 차폐 재료는 신중하게 선택해야 합니다.

접지

PCB 회로 기판 설계에서 접지는 신호 무결성을 유지하고 EMI를 최소화하는 데 중요합니다. 기준 접지면은 신호의 깨끗한 리턴 경로를 제공하고 고속 회로를 EMI로부터 보호합니다. 적절한 PCB 접지는 전원 회로에도 도움이 될 수 있습니다. 그러나 시작하기 전에 PCB 회로 설계에서 고려해야 할 몇 가지 요소가 있습니다.

먼저, 전원 플레인에서 아날로그 접지 지점을 분리하세요. 이렇게 하면 전원 플레인의 전압 스파이크를 방지할 수 있습니다. 또한 디커플링 커패시터를 보드 전체에 분산 배치합니다. 디지털 컴포넌트의 경우 전원 플레인과 동일한 값의 디커플링 커패시터를 사용해야 합니다. 둘째, 접지면을 두 개 이상의 레이어에 분산시키면 루프 면적이 증가하므로 피하세요.

접지면은 전자 부품에 너무 가깝지 않아야 합니다. 전자기 유도(EMI)는 두 개의 트레이스가 너무 가깝게 배치되면 신호가 결합되는 원인이 됩니다. 이 현상을 크로스토크라고 합니다. 접지면은 크로스토크를 최소화하고 EMI를 줄이도록 설계되었습니다.

전송 라인

전송 라인은 보드의 기능에 영향을 미칠 수 있기 때문에 PCB 회로 기판 설계에 중요합니다. 전송 라인의 특성에는 특성 임피던스와 전파 지연이 포함됩니다. 이러한 매개변수를 제어하지 않으면 신호 반사 및 전자기 노이즈가 발생할 수 있습니다. 이로 인해 신호 품질이 저하되고 회로 기판의 무결성이 손상될 수 있습니다.

전송 라인은 스트립 라인과 동일 평면 도파관 등 다양한 모양을 가질 수 있습니다. 각 유형의 전송선에는 특성 임피던스가 있으며, 이는 전도성 스트립의 폭과 두께에 따라 결정됩니다. 다른 유형의 전송선과 달리 스트립 라인은 전도성 스트립이 두 개의 다른 층 사이에 내장될 수 있으므로 단일 접지면이 필요하지 않습니다.

또 다른 유형의 전송 라인은 마이크로스트립으로, 일반적으로 PCB 회로 기판의 가장 바깥층에 사용됩니다. 이러한 유형의 트레이스는 주파수에 따라 달라지는 높은 특성 임피던스를 제공합니다. 이러한 임피던스의 차이는 반대 방향으로 이동하는 신호의 반사로 이어집니다. 이러한 효과를 방지하려면 임피던스가 소스의 출력 임피던스와 같아야 합니다.

저역 통과 필터

저역 통과 필터는 저주파에서 전파 등의 신호를 필터링하는 데 사용됩니다. PCB 회로 기판 설계에서 커패시터를 저역 통과 필터로 사용하면 회로의 성능을 향상시킬 수 있습니다. 그러나 Rogers 4003 인쇄 회로 기판 재료를 항상 사용할 수 있는 것은 아니며 시중에서 항상 구할 수 있는 것은 아닙니다.

페라이트는 일반적으로 저역 통과 필터로 사용되지만, 이 소재는 DC 전류에 노출되면 포화 상태에 빠지기 쉽습니다. 따라서 회로 임피던스가 페라이트의 임피던스보다 높으면 저역 통과 소자로 사용할 수 없는 경우도 있습니다.

PCB 레이어 스택업을 사용하여 전자파 방사를 제어하는 방법

PCB 레이어 스택업을 사용하여 전자파 방사를 제어하는 방법

PCB 적층 스택업은 EMC를 줄이고 EMF 방출을 제어하는 가장 좋은 방법 중 하나입니다. 하지만 위험이 없는 것은 아닙니다. 두 개의 신호 레이어로 PCB를 설계하면 신호 라우팅을 위한 보드 공간이 부족하여 PWR 평면이 절단될 수 있습니다. 따라서 두 개의 적층된 전도성 평면 사이에 신호 레이어를 배치하는 것이 좋습니다.

Using a 6-layer PCB stackup

A 6-layer PCB stackup is effective for decoupling high-speed signals and low-speed signals, and can also be used to improve power integrity. By placing a signal layer between the surface and the interior conductive layers, it can effectively suppress EMI.

The placement of the power supply and ground on the 2nd and fifth layers of the PCB stackup is a critical factor in controlling EMI radiation. This placement is advantageous because the power supply’s copper resistance is high, which can affect the control of common-mode EMI.

There are different configurations of 6-layer PCB stackups that are useful for different applications. A 6-layer PCB stackup should be designed for the appropriate application specifications. Then, it must be thoroughly tested to ensure its functionality. After this, the design will be turned into a blue print, which will guide the manufacturing process.

PCBs used to be single-layer boards with no vias and clock speeds in the hundred kHz range. These days, they can contain up to 50 layers, with components nestled between layers and on both sides. Signal speeds have increased to over 28 Gb/S. The benefits of solid-layer stackup are numerous. They can reduce radiation, improve crosstalk, and minimize impedance issues.

Using a core-laminated board

Using a core-laminated PCB is an excellent way to protect electronics from EMI radiation. This type of radiation is caused by fast-changing currents. These currents form loops and radiate noise when they change rapidly. In order to control the radiation, you should use a core-laminated board that has a low dielectric constant.

EMI is caused by a variety of sources. The most common is broadband EMI, which occurs over radio frequencies. It is produced by a number of sources, including circuits, power lines, and lamps. It can damage industrial equipment and reduce productivity.

A core-laminated board can include EMI reducing circuits. Each EMI reducing circuit comprises a resistor and a capacitor. It can also include a switching device. The control circuit unit controls each EMI reducing circuit by sending selection and control signals to the EMI-reducing circuits.

Impedance mismatching

PCB layered stackups are a great way to improve EMI control. They can help contain electrical and magnetic fields while minimizing common-mode EMI. The best stackup has solid power and ground planes on outer layers. Connecting components to these planes is faster and easier than routing power trees. But the trade-off is increased complexity and manufacturing costs. Multilayer PCBs are expensive, but the benefits may outweigh the trade-off. To get the best results, work with an experienced PCB supplier.

Designing a PCB layered stackup is an integral part of the signal integrity process. This process requires careful consideration of mechanical and electrical performance requirements. A PCB designer works closely with the fabricator to create the best possible PCB. Ultimately, the PCB layer stackup should be able to route all signals successfully, keep signal integrity rules intact, and provide adequate power and ground layers.

A PCB layered stack-up can help reduce EMI radiation and improve signal quality. It can also provide a decoupling power bus. While there is no one solution to all EMI issues, there are several good options for optimizing PCB layered stacks.

Trace separation

One of the best ways to control EMI radiation is to use layer stack up in PCB designs. This technique involves placing the ground plane and signal layers next to each other. This allows them to act as shields to the inner signal layers, which helps reduce common-mode radiation. Moreover, a layered stackup is much more efficient than a single-plane PCB when it comes to thermal management.

In addition to being effective in containing EMI radiation, a PCB layered stack design also helps improve component density. This is done by ensuring that the space around the components is larger. This can also reduce common-mode EMI.

To reduce EMI radiation, a PCB design should have four or more layers. A four-layer board will produce 15 dB less radiation than a two-layer board. It is important to place the signal layer close to the power plane. The use of good software for PCB design can aid in choosing the right materials and performing impedance calculations.

칩 구성 요소를 납땜하는 방법

칩 구성 요소를 납땜하는 방법

Hand soldering

수작업 납땜은 부품에 열과 압력을 가하여 강력한 결합을 형성하는 것입니다. 웨이브 납땜기나 리플로우 납땜기와 달리 수작업 납땜은 납땜 인두와 납땜 스테이션을 갖춘 개인이 수행합니다. 수작업 납땜은 소형 부품이나 수리 및 재작업에 사용할 수 있습니다.

To begin soldering, hold the soldering iron tip on the chip’s lead or contact point. Next, touch the tip of the solder wire to the lead. Then, heat the lead and solder until the solder flows. Ensure that the solder covers the entire lead or contact point. To prevent tombstoneing, don’t hold heat on one side of the chip for too long. Otherwise, the solder will reflow onto the opposite side.

The hand soldering process is generally the final step of prototype assembly. When using a Thermaltronics soldering tool, you can finish fine details on both through-hole and surface-mount components. When using hand soldering, it is best to use a temperature-controlled iron. Using a non-temperature-controlled iron will not produce reliable electrical joints.

Through-hole soldering

Through-hole soldering is a process that entails putting together a component with lead wires. Lead wires are inserted into the holes using a plier, which is held against the body of the component. It is important to apply gentle pressure on the leads as they are inserted into the through-holes. This process ensures that the leads of the chip components do not become overstretched. Excessive stretching may affect the placement of other components on the PCB. Additionally, it can affect the appearance of the entire through-hole soldering process.

Before soldering, it is important to clean the chip component’s surface. To clean a chip component, you can use a 3M Scotch-Brite Pad or sine grade steel wool. It is important to use the correct soldering flux as water-soluble flux can oxidize the PCB or through-hole component.

Lead-free soldering

Lead-free soldering is a process that uses lead-free solder and a higher-wattage soldering iron. To achieve optimal performance, soldering temperatures must be high enough to transfer enough heat to the chip component. The temperature required depends on the component’s volume, thermal mass, and board tolerances.

The first step to lead-free soldering is determining if the chip components are compatible with lead-free solder. The process is not without complications. Some chip components are coated with a tin-lead alloy for solderability. However, this type of coating violates environmental legislation. Fortunately, some chip manufacturers have found ways to use lead-free solder with tin-lead components. This is known as backward compatibility.

Another way to make chip components lead-free is to use nickel-lead. Nickel-lead has been used for years with tin-lead solder. Another option is Ni-Pd-Au solder. However, Ni-Pd-Au is not wettable in the same way as tin.

Flux in lead-free solder

Flux is a pre-processing agent used during the soldering process. Flux promotes metallurgical bonds between chip components, so the solder joints will not break or fluctuate in response to stress. It also removes oxidation from surfaces, which facilitates wetting, the process of solder flowing over the surface.

Flux residues can lead to corrosion and dendritic growth on PCB assemblies. After soldering chip components, the residues should be cleaned off with a good flux remover. For best results, angle the board while cleaning it so that excess solvent runs off the board. A lint-free wipe or a horsehair brush can be used to scrub the board gently.

Flux is an important component of lead-free solder. It cleans the metal surface to ensure a good metallurgical bond. Bad solder joints can lead to costly component failures. Luckily, flux is a chemical cleaning agent that can be applied before soldering, and during the process itself.

Cleaning excess solder

When soldering chip components, it’s often necessary to clean excess solder from them. But it can be difficult to remove the solder that has already been applied. Once it’s adhered to the component, the solder will have already been heated two or three times. Each reheat changes the physical composition of the metal. As a result, the solder becomes increasingly brittle. To avoid this, it’s best to remove the old solder and replace it with a new one.

Another option is to use a braid of solder to remove excess solder from the chip component. To do this, place a braid of solder over the component, hold the soldering iron against the braid, and wait for a few seconds. Afterwards, remove the solder braid.