Sådan laver du et simpelt printkort

Sådan laver du et simpelt printkort

Hvis du vil lave dit eget printkort, er her nogle trin, du kan følge. De omfatter de materialer, du skal bruge, beregning af impedanser og lodning. Når du har styr på disse trin, kan du gå videre med projektet og lave et mere komplekst printkort.

Trin til fremstilling af et printkort

Der er nogle få trin i fremstillingen af et printkort. Det første trin er at forberede dit skema. Det giver dig mulighed for at planlægge placeringen af komponenterne. Når du har skemaet, skal du importere det til dit CAD-system. Dernæst skal du placere komponenternes fodaftryk inden for printkortets omrids. Disse footprints viser netforbindelserne som ghost-line-billeder, der indikerer, hvilke dele der er forbundet med hinanden. Dernæst placerer du komponenterne på printkortet under hensyntagen til den bedste placering for den bedste ydeevne, såsom minimering af elektrisk støj og overdreven varme. Du skal også tage højde for eventuelle fysiske forhindringer, såsom kabler, stik eller monteringshardware.

Når lagene er klar, fjernes et kobbersubstrat. Kobberlaget vil fungere som printkortets base. De ydre lag vil blive fastgjort til det med stifter. Når lagene er blevet placeret, er printkortet klar til limning. Det yderste lag vil være et glasfibermateriale, der er præimprægneret med epoxyharpiks. Dette materiale vil også dække det oprindelige substrat og eventuelle ætsninger af kobberspor. Det sidste trin er at samle pladen ved hjælp af et tungt stålbord. Under samleprocessen sættes lagene sammen med stifter, hvilket sikrer, at de ikke forskubber sig under justeringen.

Nødvendige materialer

For at lave et printkort skal du først købe et printkort (PCB). Et printkort består af tre lag: et ledende lag (som regel kobber), der er omsluttet af to lag ikke-ledende materiale. Endelig er der ledningerne, som forbinder de forskellige dele af kredsløbet. Disse ledninger kan komme i forskellige farver og længder, og nogle har klemmer eller clips i den ene ende.

PCB'er er lavet af mange forskellige materialer, og derfor er det vigtigt at vælge det rigtige materiale til dit kredsløb. Forskellige materialer har forskellige egenskaber og kan forbedre dit kredsløbs ydeevne. For eksempel er nogle materialer bedre egnet til højhastighedsapplikationer end andre, mens andre er bedre til højtemperaturapplikationer.

Lodning

Hvis du overvejer at lave dine egne elektroniske kredsløb, er der mange måder, du kan komme i gang på, herunder lodning af et simpelt printkort. At bruge de rigtige værktøjer er en vigtig del af denne proces, da korrekt udstyr og teknikker vil gøre det muligt for dig at fuldføre opgaven med succes. Du kan f.eks. bruge en wire cutter til at klippe ledningerne over. Dette værktøj skal være skarpt og have en affaset kant, så det giver et rent og fladt snit. Det er med til at minimere risikoen for kortslutning. Når du klipper ledningerne over, skal du huske at holde fast i den overskydende ledning, så den ikke flyder ud over det hele.

Før du lodder, skal du rengøre området omkring hver komponent med en våd svamp. Du kan også bruge en almindelig svamp til at rengøre spidsen af din loddekolbe. Du skal også sikre dig, at du har den rigtige loddekolbe, som skal have en temperatur på 400 grader Celsius. Sørg også for at mærke alle komponenter ordentligt og lægge dem ordentligt ud. Du bør også bruge en jordet håndledsrem for at reducere mængden af statisk elektricitet.

Samling

Montering af et simpelt printkort indebærer, at man sætter mange komponenter sammen på et stykke printkort. Disse komponenter er generelt lavet af metal og er monteret på printpladen gennem metalflige. De kan monteres manuelt på printpladen og loddes til puderne på den anden side af printpladen, eller de kan monteres på printpladen ved hjælp af en automatiseret indsætningsmonteringsmaskine. Uanset om de monteres manuelt eller ej, giver overflademontering mulighed for en høj tæthed af kredsløbet og minimerer størrelsen af det færdige produkt.

Kredsløbssæt indeholder normalt 5 komplette kredsløbskort, men du kan ofte bestille flere. De fleste vil ikke fortryde, at de bestiller mere, end de har brug for, da de ofte ender med at bruge ekstra komponenter under test eller debugging. De ubrugte dele er ofte mærket DNP eller "Do Not Populate" for at indikere, at de ikke er en del af produktionsdesignet.

Hvorfor printkort?

Hvorfor printkort?

Printed circuit boards have long been in use and have a variety of applications. Today, they’re used in almost every industry, including manufacturing, electronics, and more. They provide a platform for mounting electronic components, and make the manufacturing process much simpler. Here are some ways you can use this vital component.

Printed circuit boards are key components of electronic equipment

Printed circuit boards are crucial parts of electronic equipment, as they enable the flow of electricity from one component to another. They can contain anything from a simple transistor to a complex microprocessor. All printed circuit boards have conductive pathways on one side and a surface on the other for electrical connections. This allows for easy addition and removal of components.

Printed circuit boards have many benefits over traditional wired circuits, including being lightweight and reliable. In addition, they are inexpensive and easy to maintain. Printed circuit boards have a broad range of applications in various industries, including medical electronics and computers. For instance, they are used in MRI machines, which are becoming more sophisticated and cost-effective due to their electronic capabilities.

Printed circuit boards are made of thin, rectangular substrates that are covered with copper conductors. They also provide mechanical support to electronic components and allow the device to be mounted in an enclosure. It is important that the design of a printed circuit board match the design of the electronic component, as it must work in concert with the bare circuit board, the packaging of integrated circuits, and the manufacturing process.

They provide a way to connect electronic components

Printed circuit boards are a common way of connecting electronic components. They can contain a simple transistor or an advanced microprocessor. Because they are built on a flat surface, they can contain many components and allow for easy addition or removal. Printed circuit boards are also a useful experimental tool.

Printed circuit boards come in a variety of sizes and shapes. Some have holes while others have small pads. The electronics are connected to the board through the solder pads. The solder pads can be either through-hole or surface-mount. Surface-mount devices attach to the board with melted solder.

Printed circuit boards are important for the production of electronic devices. They allow designers to make the circuitry more flexible and reduce the cost of electronic packaging. The versatility of printed circuit boards allows for more creative designs, especially when it comes to wearable electronics.

They simplify the manufacturing process

The manufacturing of printed circuit boards can be done by either a subtractive or an additive process. The subtractive process involves etching areas of the substrate that are not part of the desired pattern away. This simplifies the manufacturing process and reduces costs. Printed circuit boards are used in a wide range of applications.

There are two main types of printed circuit boards: single-sided and multilayered. Single-sided boards have two layers of circuits, while double-sided boards have multiple layers. Single-sided boards have components on one side and double-sided circuits on the other. A multi-layered board has multiple layers of copper and insulating material, and is used in most types of electronic devices. The components are connected to these layers by through-hole or surface mount technology.

Printed circuit boards are commonly made from laminated composite materials, such as copper. The copper is placed over a non-conductive material, such as a glass or plastic substrate. The copper circuits are then soldered onto this surface, with a solder mask protecting the copper from short circuits and other soldering errors.

They are used in a wide variety of industries

There are many industries that use printed circuit boards, including medical devices and consumer electronics. The demand for these boards is high and they must be both durable and cost-effective. PCBs are used in a wide range of medical devices, from tiny devices like pacemakers to large ones like CAT scan machines.

The most important component of a PCB is a circuit. A circuit is a complete path for electrons that must flow in a closed loop. Printed circuit boards have metal lines that form conducting pathways, and they have varying resistances. The resistance of the circuit depends on the type of metal used for the lines.

There are many different types of printed circuit boards available. Printed circuit boards are usually simple and inexpensive. They cut down on the cost of electronic packaging and are ideal for wearable and disposable electronic devices. They also give electrical designers more freedom to be creative with their designs.

Sådan læser du et printkort

Sådan læser du et printkort

There are some basic things that you should know when trying to understand how to read a PCB. For instance, you need to understand what a resistor is. A resistor is a piece of metal that has a measurable resistance. Usually, a resistor is marked with an ohm measurement mark. The ohm symbol looks like the Greek letter Omega. The value 100MO means one hundred megaohms. You should also know how to identify a capacitor. Lastly, a board may be marked with traces or components.

Analyzing a board along the signal flow

The design of a PCB can be complicated. Many of the components are layered with a different signal flow. This can cause signal integrity issues when high-speed transmission lines must pass through dense via areas or split planes. Analyzing a board along the signal flow can help you determine which components should be placed where to minimize signal integrity problems.

The distribution properties of a PCB will greatly affect the signal, particularly at high frequencies. For example, high-frequency communication systems will often suffer from ground return, which occurs when the signal current changes rapidly with the external magnetic field. This causes reverse current flow in the surrounding conductors. This effect is illustrated by a ground plane diagram.

Identifying components

The first step in identifying components on a PCB is to identify the board. There are many PCBs marked with codes and acronyms to help you determine the application. For example, a DMCB board is the DOS Main Control Board for a GE Mark V computer. Another example is a daughterboard, which attaches to the motherboard and allows access to the CPU and memory.

Each component has a marking on its body and packaging. This marking will show its value, polarity, and tolerance. In addition, there may be a color-coded band that indicates the resistance. The bill of materials will also list the component parts and their quantities. There are also reference designators that show where the components are located.

Identifying traces

When reading a PCB, you need to identify traces. These are not wires, but are the pathways through which electrical current flows. Each path has a specific resistance, and it is important to consider this when selecting trace widths. The resistance of a path can be determined by its temperature rise, which shows how hot the trace will become when current flows through it. The temperature rise is usually the difference between the operating temperature and the maximum operating temperature.

The signal pulse on a trace travels at a rate of 84-85 picoseconds per inch in air. The signal travels at about 11.8 inches per nanosecond in vacuum, and about 145 picoseconds per inch for a common dielectric material. The propagation delay of an electrical signal depends on the design specifications, but there is a general guideline that you can follow for most PCBs.

Cleaning a board

Cleaning a PCB is a delicate process that requires a certain amount of care. Most PCB contamination is caused by the flux residues that accumulate after assembly. To get rid of this, you can use a solvent or an abrasive to clean the board thoroughly. Paper towels and kimwipes are good options to soak up the solvent or abrasive. After cleaning, make sure to wipe the board clean to remove any remaining lint.

Different types of solvents are used for PCB cleaning. Some of these solvents are mild, while others are flammable. Cleaning a PCB with a solvent can improve its performance. You can use foam or cotton swabs that are saturated with a mild solvent. Many pump dispensers sell this type of cleaning solvent. Presaturated wipes that contain isopropyl alcohol can also be used.

Repairing a board

One way to repair a PCB is to remove the damaged components and the adhesive that sticks them to the board. This can be difficult if the adhesive is dry or old. You can use workbench cleaners, which are usually consumer products.

Once you have removed the damaged components, you can use an oscilloscope to check the continuity of the circuit across the board. If you find a burned area, it means the component has failed and has to be replaced. If you don’t know where the failed component is located, you can use tweezers to lift it and replace it.

Sådan programmerer du et printkort

Sådan programmerer du et printkort

PCB programming

Programming PCBs involves a variety of methods. It’s important to choose the right method for your PCB’s size, shape, and type, as well as the number of panels that will need to be programmed. Each method has its strengths and weaknesses. Read on for some tips to get the job done the right way.

The first step is to understand how the circuit board works. This involves understanding the building block diagrams for each major component cluster. This will help you determine how modules interconnect and how much voltage flows through each stage. After that, you can move on to programming individual boards. A good circuit board design program will also have a data importer.

Once you have created your board design, place components in the correct order. The most common circuits consist of two layers. One layer is for the parts, and the other is for safety. The more layers you use, the stronger your circuits are. However, different programs have different limits for how many layers are allowed.

Using a programming jig

Using a programming jig is a great way to create your circuit board design quickly and easily. In order to program your board, place it in a 3D-printed programming jig and attach the appropriate wires to it. Once you have the wirings connected, you can use a debugger to program it. To keep things easy, place the electronics on the jig using spring-loaded (pogo) pins. These pins will align the electronics on the board with the dummy target board.

A programming jig is especially useful for high-volume production runs. It uses spring-loaded contacts to make electrical contact between the circuit board and the PCB. A jig is typically set up to program entire panels at once. However, it is more expensive than other programming techniques, and the investment in the programming jig itself is not cheap. Most programming jigs are used for medium to high-volume production runs.

Preliminary design of a circuit board

The preliminary design of a circuit board is an important step in the design process. It involves defining the function, features, interconnections, and placement of components on the circuit board. It also includes the environmental concerns associated with the design. It is also essential to create a circuit schematic, which includes the names and values of the various electrical components.

The size and number of layers of a circuit board depends on the end product and functionality. Since electronic devices are becoming smaller, so are the circuit boards. It is important to make an educated estimate of the size of the board before starting the design process. For instance, a high-density interconnect design may not be the right option if the board is too large.

Using code to program a circuit board

If you’re familiar with C programming, you can use the IDE interface to program your circuit boards. You’ll also need to be familiar with the layout of your circuit boards, or plugboard. These interconnect the functions of the device. You can see an example of a PCB’s layout in the Moog synthesizer.

The most popular way to program a circuit board is through dedicated programming headers. These make it easy for the end user to make changes and software updates. They also have a simple connection, which makes programming the circuit board easier. One disadvantage is the high cost of connector assemblies, which is why programming over USB is a popular option for production.

Soldering a circuit board

When soldering a circuit board for programming, you’ll need to be sure to use the right type of solder for the specific parts you’re using. Soft soldering is best for small components, because it uses a low liquefying temperature that will break down the solder if it’s applied to a hot surface. You’ll also need a flux, which is a chemical that helps the solder melt and bond to the surface.

First, you’ll need to isolate the pins of your microcontroller. This is done by bending the pins so that the tips of the resistors are touching the pad of the board. Once this is done, use a soldering iron to melt the solder. After the solder has cooled, remove the resistor and snip the extra wire. Repeat this process with the other components.

Når printkort bruges i fremstillingen af en enhed

Når printkort bruges i fremstillingen af en enhed

Når printkort bruges i fremstillingen af en enhed, kaldes de trykte printkort. Der findes mange forskellige typer printkort. De omfatter kobberbelagte printkort, overflademonteret teknologi og galvaniserede huller. Hvis du forstår forskellene mellem de forskellige typer printkort, kan du træffe en informeret beslutning om, hvilken type du har brug for til netop din enhed.

Indpakning af tråd

Wire wrapping er en af de hurtigste måder at installere et printkort på. Det kræver dog et vist niveau af ekspertise. Når det gøres korrekt, vil en wire wrapped forbindelse have en kontaktmodstand, der svarer til en loddet forbindelse. Det er også relativt nemt at ændre. Når du bruger et wire wrap-værktøj, er det vigtigt, at du kun bruger tre wraps pr. pol. Du bør også undgå at lave margueritkæder, når du vikler ledninger.

Wire wrapping er en proces, hvor to elektriske kontakter forbindes ved at vikle en kobbertråd omkring dem. Det er en meget pålidelig forbindelsesmetode og er ofte det første skridt for begyndere inden for elektronik. Du kan enten bruge et manuelt værktøj eller en wire wrapping-maskine.

Kobberbeklædt plade

Kobberbeklædte plader bruges ofte til fremstilling af elektroniske enheder, da de kan give mekanisk støtte og elektriske forbindelser mellem komponenter i et kredsløb. Kobber er en god leder af elektricitet, så det er et ideelt materiale til beklædning af PCB'er. Brugen af kobber i elektronisk udstyr er stigende, og mange PCB'er har nu kobberbeklædte PCB'er.

Den proces, der bruges til at fremstille kobberbeklædt laminat, omfatter udglødning af laminatet. Denne procedure reducerer den termiske udvidelseskoefficient og reducerer den dielektriske konstant.

Overflademonteret teknologi

Overflademonteringsteknologi er en ny måde at fremstille printkort på. Teknologien er mere effektiv og kræver færre trin for at fremstille et printkort. Det giver designerne mulighed for at få plads til flere elementer på et mindre printkort. Det gør processen mere omkostningseffektiv. Derudover er overflademonterede komponenter bredt tilgængelige og relativt billige. De kan også fremstilles på meget kortere tid end andre teknologier.

Overflademonteringsteknologi bruges i vid udstrækning til fremstilling af printkort. Processen begynder med en designfase, hvor man udvælger komponenterne og designer SMT'en. Der findes forskellige softwareværktøjer, som kan hjælpe med designprocessen. Derefter sendes printkortets data til en produktionsvirksomhed. Data for overfladefinishen sendes også.

Elektropletterede huller

Plating er en proces, der gør huller i printkort ledende. Kobber deponeres i hullerne ved hjælp af elektroplettering. Processen er nøje kontrolleret og indebærer, at printpladerne skiftevis dyppes i rengøringsopløsninger og pletteringsopløsninger. Derefter fjernes det overskydende kobber. Processen er også kendt som through-plating.

Elektropletterede huller i printkort er vigtige for layoutets overordnede succes. Forkert placering kan forårsage fremstillingsproblemer og forringe det endelige produkts ydeevne. For at undgå disse problemer er det vigtigt at bruge hullerne korrekt.

Tangent til tab

For at kunne bestemme tabstangenten bør signalintegritetsingeniører kende det materiale, der bruges til at fremstille printpladerne. De materialer, der bruges, er ofte en kombination af glas og resin. Forskellige typer af disse materialer vil have forskellige tabstangenter. I nogle tilfælde kan en producent ikke levere tabstangentværdier for de materialer, de bruger, så signalintegritetsingeniører skal selv bestemme disse.

Et materiales tabstangent er et mål for den mængde elektromagnetisk energi, det absorberer ved en bestemt frekvens. Materialer med en lav tabstangent vil reducere transmissionstabet. Andre faktorer, der kan påvirke ydeevnen, omfatter overfladens ruhed og lagets aflejringsopløsning. Derudover er varmeledningsevne en anden vigtig faktor, da den bestemmer, hvor godt et materiale leder varme. Dårlig varmeledningsevne begrænser enhedens ydeevne og kan begrænse ydeevnen for en stak.

Dielektrisk konstant

Når man fremstiller printkort, er det vigtigt at kende den dielektriske konstant for de anvendte materialer. Det er en vigtig parameter, fordi den hjælper dig med at vælge det rigtige laminat. De fleste laminatleverandører kan give denne information samt frekvens og resinindhold. Du kan også beregne den dielektriske konstant for et printkort ved hjælp af et program som Altium Designer. Alternativt kan du bruge et simuleringsværktøj som Simberian.

PCB-materialer er normalt fremstillet af glasfiber, kobber eller plast. Forskellige typer af disse materialer har forskellige dielektriske konstanter, som vil påvirke deres elektriske egenskaber. Den dielektriske konstant (også kaldet dissipationsfaktoren) angiver mængden af ladning, der kan eksistere mellem to ledere, når der tilføres en spænding mellem dem. Denne egenskab bestemmer den hastighed, hvormed strømmen flyder i lederen.

Miljøtest til printkort

Fremstillingen af elektroniske enheder som f.eks. printkort skal gennemgå en række miljømæssige tests, herunder fugtigheds- og termiske chok-tests. Disse tests vil afgøre, om et printkort kan modstå virkningerne af fugtighed og korrosion. Et printkort kan også gennemgå en funktionstest. Denne type test simulerer de faktiske driftsforhold og giver øjeblikkelig feedback på kvaliteten af et projekt. Den bruges i stigende grad til produktion af små partier for at sikre, at hvert printkort opfylder alle kvalitetskrav til brug i marken.

Miljøtest af printkort, der bruges til fremstilling af elektronik, er afgørende for at sikre deres pålidelighed. Selvom det ikke altid er lovpligtigt, er disse tests afgørende for elektroniske produkters pålidelighed og sikrer, at de fungerer efter hensigten. Det er vigtigt at vælge en erfaren kontraktproducent af elektronik med de nødvendige interne faciliteter til at udføre disse tests.