How to Know the Surface Finish From PCB Color

How to Know the Surface Finish From PCB Color

If you’re wondering how to know the surface finish of a PCB, you’re not alone. The color of a PCB can reveal its surface finish. You may also see a color designation called ENIG or Hard gold, Silver, or Light red. Regardless of what you see, you’ll want to make sure the PCB is plated to protect the surface.


ENIG surface finish is one of the most popular finishes for PCBs. It is made by combining gold and nickel. The gold helps protect the nickel layer from oxidation, and nickel acts as a diffusion barrier. The gold layer has a low contact resistance and is usually a thin layer. The thickness of the gold layer should be consistent with the requirements of the circuit board. This surface finish helps extend the life of the circuit board. It also has excellent electrical performance and enhances electrical conduction between the PCB’s components.

ENIG surface finish has a higher cost but a high success rate. It is resistant to multiple thermal cycles and displays good solderability and wire bonding. It is composed of two metallic layers: a layer of nickel protects the base copper layer from corrosion, and a layer of gold acts as an anti-corrosion layer for the nickel. ENIG is suitable for devices that require high levels of solderability and tight tolerances. ENIG is also lead-free.

Hard gold

Hard gold is a costly PCB surface finish. It is a high-quality, durable finish that is often reserved for components that see a high level of wear and tear. Hard gold is usually applied to edge connectors. Its main use is to provide a durable surface for components that undergo frequent actuation, such as battery contacts or keyboard contacts.

Hard electrolytic gold is a gold plated layer over a nickel barrier coat. It is the most durable of the two and is typically applied to areas that are susceptible to wear and tear. However, this surface finish is very expensive and has a low solderability factor.


Depending on the PCB’s composition, it can be produced with different colors and finishes. The three most common colors for PCB surfaces are silver, gold, and light red. PCBs with a gold surface finish are usually the most expensive, while those with a silver finish are cheaper. The circuit on the PCB is primarily made of pure copper. Because copper oxidizes easily when exposed to air, it is very important to protect the outer layer of the PCB with a protective coating.

Silver surface finishes can be applied using two different techniques. The first technique is immersion, in which the board is immersed in a solution containing gold ions. The gold ions on the board react with the nickel and form a film that covers the surface. The thickness of the gold layer must be controlled so that the copper and nickel can remain solderable, and the copper is protected from oxygen molecules.

Light red

The surface finish of a PCB can be glossy, non-glossy, or light red. A non-glossy finish tends to have a more porous look, and a glossy finish tends to be reflective and hard shell-like. Green is the most popular PCB color, and it’s also one of the least expensive. It’s important to clean PCBs before using them to avoid oxidation.

Although solder mask color isn’t a direct reflection of PCB performance, some manufacturers use it as a design tool. The color is ideal for PCBs that require brilliant visibility and sharp contrasts. Red PCBs are also attractive when combined with silkscreens.

Electroless palladium

Using the electroless palladium surface finish on your PCBs prevents the formation of black pads on the board, and has many benefits, including excellent solderability and aluminum and silver wire bonding. This type of finish also has an extremely long shelf life. However, it is also more expensive than other finishes and requires a longer lead time.

The ENEPIG PCB surface finish process involves several steps, each of which requires careful monitoring. In the first step, copper is activated, followed by the deposition of electroless nickel and palladium. After that, the circuit board goes through a cleaning procedure, to remove oxidation residues and dust from the surface.

Lead-free HASL

If you’re looking for a new PCB, you may wonder how to tell lead-free HASL surface finishes from lead-based PCBs. While HASL has an attractive look, it’s not ideal for surface-mount components. This kind of finish is not flat, and larger components, like resistors, can’t align properly. Lead-free HASL, on the other hand, is flat, and does not use lead-based solder. Instead, it uses a copper-based solder that is RoHS compliant.

HASL offers high-quality solderability, and it can withstand multiple thermal cycles. It was once the industry standard, but the introduction of RoHS standards pushed it out of compliance. Nowadays, lead-free HASL is more acceptable in terms of environmental impact, as well as safety, and is a more efficient choice for electronic components. It also aligns more closely with the RoHS directive.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *