Empat Aturan Pengaturan Lebar dan Jarak Sirkuit

Empat Aturan Pengaturan Lebar dan Jarak Sirkuit

Ada empat aturan dasar untuk mengatur lebar dan jarak sirkuit. Ini termasuk aturan x/y, aturan 2/2, aturan sudut jejak 90 derajat, dan aturan penumpukan PCB. Mengetahui aturan-aturan ini akan membuat desain Anda jauh lebih mudah untuk dikerjakan. Menggunakan panduan ini akan membantu Anda mendesain PCB dengan lebar dan jarak sirkuit yang tepat.

Aturan x/y

Ketika mendesain papan sirkuit, penting untuk mempertimbangkan aturan x/y untuk mengatur lebar dan jarak sirkuit. Ini adalah aturan yang menentukan lebar antara dua sirkuit pada papan. Sebagai contoh, aturan x/y sebesar 12/12 berarti bahwa lebar dan jarak sirkuit lokal harus lebih kecil dari luasnya. Sebaliknya, aturan x/y 10/10 berarti lebar sirkuit lokal harus lebih besar dari area sekitarnya.

Aturan 2/2

Aturan dua bagian untuk mengatur lebar dan jarak sirkuit mengacu pada ukuran ruang di antara sirkuit. Ini juga dikenal sebagai aturan area. Dalam kebanyakan kasus, lebar dan jarak diatur ke nilai yang sama. Namun, aturan ini tidak efektif jika jaraknya terlalu sempit. Dalam kasus seperti itu, kemungkinan terjadinya short menjadi dua kali lipat.

Lebar dan jarak jejak pada papan sirkuit tercetak sangat penting untuk proses desain. Meskipun sebagian besar perutean digital bergantung pada nilai default, papan sirkuit yang lebih kompleks mungkin memiliki lebar jalur yang perlu dihitung secara tepat berdasarkan penumpukan lapisan. Jejak berkecepatan tinggi dengan impedansi sensitif mungkin memerlukan jarak yang lebih lebar untuk mencegah masalah integritas sinyal.

Aturan sudut jejak 90 derajat

Secara tradisional, industri desain PCB telah menghindari sudut 90 derajat. Alat tata letak PCB modern dilengkapi dengan kemampuan mitering, yang secara otomatis akan mengganti sudut 90 derajat dengan dua sudut 45 derajat. Namun, jika Anda memang perlu membuat tata letak dengan sudut 90 derajat, yang terbaik adalah menghindarinya, karena dapat menyebabkan loop seperti antena yang dapat menambah induktansi. Meskipun mengurangi sudut hingga 135 derajat dapat membantu dalam kasus ini, ini bukanlah solusi yang baik.

Aturan sudut jejak 90 derajat apabila menetapkan jarak dan lebar sirkuit, harus diterapkan secara hati-hati. Hal ini karena sudut tersebut menciptakan diskontinuitas yang dapat mengakibatkan pantulan dan pancaran. Sudut 90 derajat juga paling rentan terhadap pantulan yang bergeser fasa. Oleh karena itu, sebaiknya hindari menggunakan sudut dengan sudut 90 derajat, kecuali jika Anda berencana menempatkannya di area yang sangat sempit.

Alasan lain untuk menghindari sudut adalah karena sudut yang tajam akan menghabiskan lebih banyak ruang. Sudut yang tajam juga lebih rapuh dan akan menyebabkan diskontinuitas impedansi. Masalah-masalah ini akan mengurangi ketepatan sinyal. Oleh karena itu, perangkat lunak tata letak PCB modern lebih cenderung merekomendasikan jalur sudut kanan dan tidak memerlukan perutean sudut 45 derajat.

Aturan penumpukan PCB

Aturan penumpukan PCB untuk lebar dan jarak sirkuit adalah panduan penting ketika mendesain papan multilayer. Pada dasarnya, ini berarti bahwa jika Anda ingin memastikan bahwa sinyal seimbang dan berjalan dari satu sudut ke sudut lainnya, Anda perlu mengatur lebar dan jarak sirkuit yang sesuai. Sering kali, lebar dan jarak dihitung dengan mempertimbangkan impedansi sirkuit.

Penumpukan yang baik memungkinkan Anda mendistribusikan energi secara merata, menghilangkan interferensi elektromagnetik, dan mendukung sinyal kecepatan tinggi. Selain itu, hal ini juga mengurangi EMI dan memastikan bahwa produk Anda dapat diandalkan. Namun demikian, ada beberapa tantangan dalam mengelola stackup yang baik. Untuk mengatasi masalah ini, Anda perlu menggunakan bahan yang tepat dan mengatur lebar dan jarak sirkuit dengan benar. Perangkat lunak penumpukan PCB yang baik membantu Anda dengan tugas-tugas ini. Ini juga akan membantu Anda memilih bahan yang tepat untuk desain multilayer Anda.

Seiring dengan bertambahnya jumlah lapisan, begitu juga dengan persyaratan untuk penumpukan PCB. Sebagai contoh, penumpukan yang paling sederhana biasanya terdiri dari PCB empat lapis, sedangkan penumpukan yang lebih rumit memerlukan laminasi berurutan secara profesional. Jumlah lapisan yang lebih tinggi juga memungkinkan desainer memiliki lebih banyak fleksibilitas dalam tata letak sirkuit.

Apa Peran Papan Salinan PCB?

Apa Peran Papan Salinan PCB?

PCB copy board

PCB copy board is one of the modern products that help manufacturers in manufacturing integrated circuits. It is an electronic device that utilizes reverse research and development (R&D) technology to restore a PCB board from a scanned copy. This process allows manufacturers to optimize the design of their PCB board and add new features to their products. It has the potential to give companies the edge in the market.

The process of PCB copy board is very precise and involves several vital steps. It is essential to choose a PCB clone service with a proven record of success. The PCB copy board role is vital in today’s electronic industry, as the industry is changing and innovations are commonplace. As a result, electronic producers are always looking for ways to improve their PCB designs.

Regardless of how complex a circuit board is, it has to follow certain standards and have a clear definition of the circuit design. In other words, it must define how all the copper points are connected to each other. A poorly defined network will cause a short circuit.

PCB clone service

A PCB clone service can save you time and money by printing circuit boards from an existing design. It eliminates the need to design circuit boards from scratch and can deliver the same performance as the original board. Additionally, PCB clones save space because they use less wires and have a high shelf life.

PCBs are an integral part of most electronic devices and play a pivotal role in the electronics industry. The recent development of electronics has led to an increased demand for PCB fabrication. However, traditional methods of R&D cannot keep up with this continuous demand. With this in mind, reverse engineering is becoming more popular. Using a PCB clone service can significantly extend the life of a device or system. A PCB clone can also be modified to meet the specific needs of the user.

PCB cloning allows manufacturers to produce a large number of boards from one original design. This can cut labor costs and allow for more flexible production. It can also make it possible to replace faulty components. With PCB cloning, you can take advantage of automated production processes and ensure the highest quality boards possible.

PCB clone technology

PCB clone technology allows producers to duplicate circuit boards quickly. It takes the information on a circuit board and creates a duplicate of the original design. This can help companies streamline their manufacturing processes and improve product quality. In addition to making PCB boards cheaper, the technology also allows for greater automation.

By reusing an existing PCB, engineers can create a new product without incurring design or production costs. They can also use the same PCB design for different products, which is a major plus when it comes to cost. Because they don’t have to worry about the design, PCB clone technology streamlines the production process and reduces labor costs.

PCB cloning is an increasingly popular method for making copies of electronic circuit boards. It can be done with little or no supervision and requires no new technology. It’s a cost-effective alternative for manufacturers who need to get their products in the market quickly.

PCB copy board manufacturers

Copy-exact manufacturing refers to the implementation of reproducible activities and procedures in the PCBA manufacturing process. This allows for a smooth transition from design validation to production validation. It also ensures that all process aspects are documented. This consistency is a critical component for successful scaling and switching between different CMs.

PCB copy board manufacturers need to understand the market and develop new products to compete in the high-tech electronics market. They need to identify the market entry points and improve the functionality of their products to achieve sustainability. Innovation and sustainability go hand in hand, and innovative thinking can lead to success. As the most important footnote of the modern high-tech electronic products, the PCB copy board manufacturers are aiming to create more innovative and efficient products.

The process of PCB copying is very complex and involves extreme care. It requires precise steps and careful attention to ensure the highest quality. Expert PCB copy board manufacturers know how to carry out this process with utmost care.

Cara Menghapus Tab Pemisah PCB

Cara Menghapus Tab Pemisah PCB

Selama perakitan PCB, tab pemisah pada papan perakitan PCB harus dilepaskan setelah komponen dirakit. Untuk melepas tab ini, Anda memiliki beberapa opsi. Opsi ini termasuk menggunakan depanelizer Penggilingan, depanelizer potongan V, atau pelepasan manual.

Gigitan tikus

Untuk mempermudah proses pelepasan, tab pemisah pada PCB diposisikan sedemikian rupa sehingga tidak menyentuh komponen yang berdekatan. Jarak antara tab dan komponen yang berdekatan harus sekitar setengah inci. Anda juga perlu memisahkan kedua sisi tab pemisah agar tidak saling merusak. Jika tab pemisah tidak ditempatkan di lokasi yang tepat, hal ini dapat menyebabkan papan tidak dapat dibaca, dan hal ini dapat menyebabkan kerusakan pada komponen lain.

Alat pelepas tab pelepas PCBA terdiri dari alas penggeser dan pelat dasar pemasangan. Penggeser yang dapat digerakkan dikendalikan oleh tombol penyesuaian. Hal ini memungkinkan perangkat bergerak di sepanjang jalur yang telah ditetapkan dan melepaskan PCBA. Papan PCBA kemudian dipegang dengan dua tangan. Tenaga yang lembut diterapkan untuk melepaskan tab pelepas PCBA.

Penghapusan manual

Melepas tab breakaway PCBA secara manual lebih mudah daripada yang Anda bayangkan, tetapi prosesnya bukannya tanpa risiko. Hal ini dapat merusak komponen dan memberikan tekanan yang tidak perlu pada PCB. Selain itu, metode ini membutuhkan kehati-hatian yang tinggi, karena lubang pelepas terletak di tepi papan. Menggunakan perangkat khusus untuk mematahkan tab dapat membantu mencegah kerusakan.

Pelepasan tab breakaway PCBA secara manual dapat dilakukan dengan beberapa metode, termasuk penggunaan penggilingan atau depanelizer alur-V. Menggunakan jenis alat ini akan menghilangkan limbah dan menjamin kualitas, serta akan membantu Anda mengurangi sisa. Namun demikian, Anda harus memprogram mesin untuk tugas ini.

Bagaimana Insinyur Dapat Menghindari Arus Masuk Selama Desain PCB?

Bagaimana Insinyur Dapat Menghindari Arus Masuk Selama Desain PCB?

Inflows are a problem in pcb design and must be avoided. There are several ways to do this, including Solid ground planes, keepouts, Shift-left verification, and component keepouts. These practices will help engineers avoid inflows, and will make a PCB layout easier to manufacture.

Component keepouts

Keepouts are a great way to control the placement of objects on a PCB design. They can be overlaid or assigned to any signal layer, and they can reject specific objects. They’re particularly useful for tightening control of things like Polygon Pours and Via Stitching.

Keepouts are zones of the board where a small part or mechanical shape is too close to a track or trace. These areas should be noted on the schematic. Keepouts can be used to prevent overlapping of vias, power planes, or other noise-prone areas.

Identifying component keepouts is easy if you understand the basics of component placement. Look for identifiers on each pin, and make sure they match with the component. You can also check the dimensions of the pads and pad pitches to identify whether they’re the correct component.

A PCB design software allows you to set keepout zones for components. This can be accomplished with the use of templates or manually. Typically, keepout zones are drawn over the board surface to ensure that they aren’t obstructed.

Solid ground plane

A solid ground plane is an important feature when designing a printed circuit board. Adding a ground plane to your board is a relatively simple and inexpensive process that can significantly improve your PCB design. This important piece of circuitry is used to provide a solid foundation for all of the materials that will be installed on the board. Without a ground plane, your board is prone to electrical noise and problems.

Another benefit of a ground plane is that it can help prevent electromagnetic interference (EMI) from infiltrating your design. This electromagnetic interference can be generated by your device or from nearby electronics. By choosing a ground plane that is located near the signal layer, you can minimize EMI in the final design.

Solid ground planes are particularly important for circuit boards that have multiple layers. Because of the complexities of a PCB design, the ground plane must be properly designed to prevent errors and ensure a reliable connection between multiple layers. Moreover, the ground plane should be large enough to accommodate the components that will be used on it.

Shift-left verification

Shift-left verification during PCB designs is an efficient design process that eliminates the need for extensive full-board verification and lets designers focus on critical second-order issues. Unlike traditional design flow, where the PCB specialist is a last resort, shift-left verification can be performed by design authors. This way, designers can make design improvements before the specialists even see the boards.

Shift-left verification can help designers identify potential issues that can lead to costly revisions. For example, improper diode orientation, missing pull-up resistors, and capacitor voltage derating can be discovered during verification. These issues may not be detectable until physical testing, which often results in re-spins and tooling changes. Using automated verification during the layout phase can dramatically increase the likelihood of a successful first pass.

PCBs often contain subtle errors that can escape expert notice during manual peer review. Modern automated verification approaches can catch these errors at the schematic level. This means that design engineers can focus on higher-level problems while reducing costly revisions and redesigns. As a result, these tools have significant advantages for both design engineers and engineering project managers.

Standard practices

There are certain fundamental PCB design principles that every designer should adhere to. For example, it is essential to place components far enough apart to provide signal and power integrity, but close enough to provide adequate routing channels. Additionally, certain routings such as impedance-controlled traces, differential pairs, and sensitive signals have specific spacing requirements. When placing components, it is also important to consider design for manufacture (DFM) requirements.

When designing a PCB, it is important to consider the cost of production. Using buried or blind vias may result in increased production costs. Therefore, PCB designers should plan their designs and usage of vias ahead of time. Moreover, they should consider the size of the components in order to minimize production costs.

Another important element of PCB development is design review. Peer reviews help designers avoid common design errors. Periodic reviews ensure that the PCB layout, circuits, and functionality are accurate. Peer reviews will also identify mistakes that the designer may have overlooked.

Common Mistakes in PCB Schematic Design

Common Mistakes in PCB Schematic Design

Avoiding slivers

Slivers are small pieces of copper or solder mask that can be very harmful to the PCB’s functionality. They can lead to short circuits and can even cause corrosion of copper. This reduces the life of the circuit board. Luckily, there are a few ways to avoid them. The first is to design PCBs with minimum section widths. This will ensure that a manufacturer will be able to detect potential slivers with a DFM check.

Another way to avoid slivers is to design the PCB so that it is as deep and narrow as possible. This will reduce the chances of slivers during the fabrication process. If slivers are not detected during DFM, they will cause a failure and require scrap or rework. Designing PCBs with a minimum width will help avoid this problem and ensure the PCB is as accurate as possible.

Avoiding faulty thermals

Using the correct thermals is an important step in the PCB schematic design process. Faulty thermals can damage the PCB and cause excessive heat reflow. This can compromise the overall PCB performance, which is not what you want. Poor thermals also decrease the PCB’s durability.

During the design process, thermals can be easily overlooked. This is especially true for PCBs with ultra-small flip-chip packages. A faulty thermal pad could damage the circuit or compromise the signal integrity. To avoid this problem, the schematic design process should be as straightforward as possible.

Thermals are important to the proper operation of any circuit. Faulty thermals can cause problems during the manufacturing process. It is imperative that the design team have the right tools and personnel to detect and rectify any errors in the design. Electromagnetic interference and compatibility issues are also concerns.

Impedance mismatch

Impedance mismatch is an important factor to consider when designing a PCB. The impedance of a trace is determined by its length, width, and copper thickness. These factors are controlled by the designer, and can lead to significant changes in voltage as the signal propagates along the trace. This, in turn, can affect the integrity of the signal.

A good impedance match is necessary for maximum signal power transfer. When tracing high-frequency signals, the impedance of the trace can vary depending on the geometry of the PCB. This can result in significant signal degradation, especially when the signal is being transferred at high frequencies.

Placement of op amp units

The placement of op amp units on a PCB schematic is often an arbitrary task. For example, one might place unit A on the input, and unit D on the output. However, this is not always the best approach. In some cases, the wrong placement can lead to a circuit board that doesn’t function properly. In such cases, the PCB designer should re-define the functions of op amp chips.

Impedance mismatch between transceiver and antenna

When designing a radio transmitter or receiver, it’s important to match the impedance of the antenna and transceiver to ensure maximum signal power transfer. Failure to do so can cause signal loss along the feedline of the antenna. Impedance is not the same as PCB trace resistance, and a design that doesn’t match will result in low signal quality.

Depending on the frequency of the signal, a board with no impedance matching between the antenna and transceiver will exhibit reflections. This reflection will send some of the energy toward the driver, but the remaining energy will continue on. This is a serious signal integrity problem, especially in high-speed designs. Therefore, designers must pay close attention to impedance mismatches on the PCB schematic. In addition to affecting signal integrity, unmatched impedances can cause electromagnetic interference and localized radiation. These signals can affect sensitive components in the PCB.