How to Deal With Grounding in High Frequency Design

How to Deal With Grounding in High Frequency Design

High frequency designs need to address the issue of grounding. There are several issues that need to be addressed when it comes to grounding. These include the impedance of grounding conductors and grounding bonds, DC path dominating low-frequency signals, and single-point grounding.

Impedance of grounding conductors

The grounding electrode of a typical grounded electrical system is in parallel with the ground rods located on the line side of the service, transformers, and poles. The rod under test is connected to the grounding electrode. The equivalent resistance of the line side ground rods is negligible.

A single-point grounding method is acceptable for frequencies below one MHz, but it is less desirable for high frequencies. A single-point grounding lead will raise the ground impedance due to wire inductance and track capacitance, while stray capacitance will create unintended ground return paths. For high-frequency circuits, multipoint grounding is necessary. However, this method creates ground loops that are susceptible to magnetic field induction. Therefore, it is important to avoid using hybrid ground loops, especially if the circuit will contain sensitive components.

Ground noise can be a major problem in high frequency circuits, especially when the circuits draw large varying currents from the supply. This current flows in the common-ground return and causes error voltage, or DV. This varies with the frequency of the circuit.

Impedance of bonding conductors

Ideally, the resistance of bonding conductors should be less than one milli-ohm. However, at higher frequencies, the behavior of a bonding conductor is more complex. It can exhibit parasitic effects and residual capacitance in parallel. In this case, the bonding conductor becomes a parallel resonant circuit. It can also exhibit high resistance due to the skin effect, which is the flow of current through the outer surface of the conductor.

A typical example of a conducted interference coupling is a motor or switching circuit fed into a microprocessor with an earth return. In this situation, the earthing conductor’s impedance is higher than its operating frequency, and it is likely to cause the circuit to resonant. Because of this, bonding conductors are typically bonded at multiple points, with different bonding lengths.

DC path dominating for low-frequency signals

It is widely assumed that DC path dominating for low-frequency signals is easier to implement than high-frequency circuits. However, this method has several limitations, especially in integrated implementations. These limitations include flicker noise, DC current offsets, and large time constants. Moreover, these designs usually use large resistors and capacitors, which can produce large thermal noise.

In general, the return current of high-frequency signals will follow the path of least loop area and least inductance. This means that the majority of the signal current returns on the plane via a narrow path directly below the signal trace.

Single-point grounding

Single-point grounding is an essential element in protecting communications sites from lightning. In addition to effective bonding, this technique offers structural lightning protection. It has been extensively tested in lightning-prone areas and has proven to be an effective method. However, single-point grounding isn’t the only consideration.

If the power level difference between the circuits is large, it may not be practical to use series single-point grounding. The resulting large return current can interfere with low-power circuits. If the power level difference is low, a parallel single-point grounding scheme can be used. However, this method has many disadvantages. In addition to being inefficient, single-point grounding requires a larger amount of grounding, and it also increases the ground impedance.

Single-point grounding systems are generally used in lower frequency designs. However, if the circuits are operated at high frequencies, a multipoint grounding system can be a good choice. The ground plane of a high-frequency circuit should be shared by two or more circuits. This will reduce the chances of magnetic loops.

Power interference

Power interferences can degrade the performance of a circuit and can even cause serious signal integrity problems. Hence, it is imperative to deal with power interferences in high frequency design. Fortunately, there are methods for dealing with these problems. The following tips will help you reduce the amount of power interference in your high frequency designs.

First, understand how electromagnetic interferences occur. There are two main types of interference: continuous and impulse. Continuous interference arises from man-made and natural sources. Both types of interference are characterized by a coupling mechanism and a response. Impulse noise, on the other hand, occurs intermittently and within a short time.

Analisi dei difetti di saldatura su piazzole per PCB a stagno per immersione

Analisi dei difetti di saldatura su piazzole per PCB a stagno per immersione

Soldering defects are a common cause of PCB failure. There are several different types of defects that can lead to PCB failure. The article below explores three types of defects: Wetting, Plating through hole barrel cracking, and Liquid fluxes.

Wetting defects

Exposure to environmental factors during the manufacturing process can affect the wetting ability of immersion tin pcb pads. This can reduce assembly yield and second level reliability. Therefore, it is important to avoid or correct poor wetting defects. This research explored the effects of different temperature conditions on the wetting ability of these pads.

Immersion tin pads exhibit a variety of defects that can cause the assembly process to fail. Unlike dewetting, which is a defect in which the soldering joint is not formed, wetting defects occur when the molten solder does not adhere to the wettable surface of the PCB pads or components. This can result in holes or voids in the solder joints.

Non-wetting defects can also cause serious structural issues. In addition, they may result in poor electrical conductivity, loose components, and poor PCB pad performance.

Plating through hole barrel cracking

This study evaluated the reliability of immersion tin pcb pads through a failure analysis of soldering defects. To do this, we studied the behavior of the intermetallics inside solder joints by SEM. We compared the results of the aged and non-aged assemblies to understand how the intermetallics affect joint reliability.

The results of the investigation show that the electroless nickel coating on immersion tin PCB pads is characterized by deep crevasses and fissures. These open boundaries are attributed to the corrosive environment generated during ENIG plating. This problem can be solved by introducing a nickel controller into the plating process. This countermeasure helps to maintain good wettability in the pad and prevent oxidation.

Liquid fluxes

This failure analysis of soldering defects also includes the analysis of the flux used in the process. The use of different liquid fluxes in the reflow process may lead to different results. One method used for analyzing the effects of flux on soldering defects on immersion tin PCB pads is to assemble the flip-chip assemblies with readout chips on the bottom.

5 cause principali della formazione di schiuma sulla placcatura di rame di una scheda PCB

5 cause principali della formazione di schiuma sulla placcatura di rame di una scheda PCB

Le cause della formazione di schiuma sulla placcatura in rame di una scheda PCB sono molteplici. Alcune sono causate dall'inquinamento da olio o polvere, mentre altre sono dovute al processo di affondamento del rame. La formazione di schiuma è un problema in qualsiasi processo di ramatura, poiché richiede soluzioni chimiche che possono contaminare altre aree. Può anche verificarsi a causa di un trattamento locale improprio della superficie della scheda.

Micro-incisione

Nella micro-incisione, l'attività del precipitato di rame è troppo forte e causa la fuoriuscita dei pori e la formazione di bolle. Può anche causare una scarsa adesione e deteriorare la qualità del rivestimento. Pertanto, la rimozione di queste impurità è fondamentale per prevenire questo problema.

Prima di procedere alla ramatura, il substrato di rame viene sottoposto a una sequenza di pulizia. Questa fase di pulizia è essenziale per rimuovere le impurità superficiali e fornire una bagnatura generale della superficie. Successivamente, il substrato viene trattato con una soluzione acida per condizionare la superficie del rame. Segue la fase di ramatura.

Un'altra causa della formazione di schiuma è la pulizia impropria dopo lo sgrassaggio con acido. Ciò può essere causato da una pulizia impropria dopo lo sgrassaggio acido, da un'errata regolazione dell'agente sbiancante o da una temperatura insufficiente del cilindro di rame. Inoltre, una pulizia inadeguata può portare a una leggera ossidazione della superficie della scheda.

Ossidazione

L'ossidazione provoca la formazione di schiuma sulla placcatura di rame della scheda PCB quando il foglio di rame sulla scheda non è sufficientemente protetto dagli effetti dell'ossidazione. Il problema può verificarsi a causa della scarsa adesione o della rugosità della superficie. Può anche verificarsi quando la lamina di rame sulla scheda è sottile e non aderisce bene al substrato della scheda.

La micro-incisione è un processo utilizzato per l'affondamento del rame e la galvanotecnica. La micro-incisione deve essere eseguita con attenzione per evitare un'ossidazione eccessiva. Un'ossidazione eccessiva potrebbe portare alla formazione di bolle intorno all'orifizio. Un'ossidazione insufficiente può portare a una scarsa adesione, alla formazione di schiuma e alla mancanza di forza legante. La micro-incisione deve essere eseguita a una profondità di 1,5-2 micron prima della deposizione del rame e di 0,3-1 micron prima del processo di placcatura. L'analisi chimica può essere utilizzata per verificare che sia stata raggiunta la profondità richiesta.

Lavorazione del substrato

La formazione di schiuma sulla placcatura in rame della scheda PCB è un importante difetto di qualità che può essere causato da una cattiva lavorazione del substrato. Questo problema si verifica quando la lamina di rame sulla superficie della scheda non è in grado di aderire al rame chimico a causa di un legame insufficiente. Ciò provoca la formazione di bolle sulla superficie della scheda. Il risultato è un colore non uniforme e un'ossidazione nera e marrone.

Il processo di ramatura richiede l'uso di pesanti agenti di regolazione del rame. Questi farmaci chimici liquidi possono causare una contaminazione incrociata della scheda e dare luogo a scarsi effetti di trattamento. Inoltre, possono causare superfici non uniformi della scheda e una scarsa forza di adesione tra la scheda e il gruppo PCBA.

Microerosione

La formazione di schiuma sulla placcatura in rame della scheda PCB può essere causata da due fattori principali. Il primo è un processo di ramatura non corretto. Il processo di ramatura utilizza molte sostanze chimiche e solventi organici. Il processo di trattamento della placcatura del rame è complicato e le sostanze chimiche e gli oli presenti nell'acqua utilizzata per la placcatura possono essere dannosi. Possono causare contaminazioni incrociate, difetti non uniformi e problemi di legame. L'acqua utilizzata per il processo di ramatura deve essere controllata e di buona qualità. Un'altra cosa importante da considerare è la temperatura della ramatura. Questa influisce notevolmente sull'effetto di lavaggio.

La microerosione si verifica quando l'acqua e l'ossigeno si dissolvono sulla lastra di rame. L'acqua e l'ossigeno disciolti dall'acqua provocano una reazione di ossidazione e formano un composto chimico chiamato idrossido ferroso. Il processo di ossidazione provoca il rilascio di elettroni dalla placcatura di rame della scheda.

Mancanza di polarità catodica

La formazione di schiuma sulla placcatura in rame di una scheda PCB è un difetto di qualità comune. Il processo di produzione delle schede PCB è complesso e richiede un'attenta manutenzione del processo. Il processo prevede il trattamento chimico a umido e la placcatura e richiede un'attenta analisi delle cause e degli effetti della formazione di schiuma. Questo articolo descrive le cause della formazione di schiuma sulla lastra di rame e cosa si può fare per prevenirla.

Anche il livello di pH della soluzione di placcatura è fondamentale, in quanto determina la densità di corrente catodica. Questo fattore influisce sulla velocità di deposizione e sulla qualità del rivestimento. Una soluzione di placcatura a pH più basso avrà un'efficienza maggiore, mentre un pH più alto ne avrà una minore.

4 processi principali per la produzione di fori di alta qualità per PCB placcati

4 processi principali per la produzione di fori di alta qualità per PCB placcati

I circuiti stampati (PCB) sono il cuore di qualsiasi dispositivo elettrico e la qualità dei loro fori passanti ha un impatto diretto sul prodotto finale. Senza un adeguato controllo di qualità, una scheda potrebbe non soddisfare gli standard previsti e potrebbe addirittura dover essere rottamata, con un costo elevato. Pertanto, è essenziale disporre di apparecchiature per la lavorazione dei PCB di alta qualità.

Solder resist

PCB plated though holes are used in a variety of applications. They are conductive and have lower resistance than non-plated through holes. They are also more mechanically stable. PCBs are typically double-sided and have multiple layers and plated through holes are essential for connecting the components to the corresponding layers of the board.

Plated through-holes provide fast prototyping and make soldering components easier. They also enable breadboarding circuit boards. They also provide superior connections and high power tolerances. These features make PCB plated through-holes an important component for any business.

The first process for producing high-quality PCB plated through holes is to assemble the boards. Then, the plated through-hole components are added to the PCB and framed. This requires highly skilled engineers. During this stage, they have to follow strict standards. Afterwards, they are checked for accuracy with a manual inspection or an x-ray.

Plating

Plated through holes can be a huge success for your business, but they can also hinder your design. Luckily, there are solutions for these issues. One problem is the inability of the board to properly connect with other components. You may also find that the hole is hard to remove due to oil or adhesive contamination, or even blistering. Fortunately, you can avoid these issues by following proper drilling and pressing techniques.

There are several different kinds of through holes on a PCB. Non-plated through holes have no copper on the wall of the hole, so they do not have the same electrical properties. Non-plated through holes were popular when printed circuits had only one layer of copper traces, but their use diminished as the board’s layers increased. Today, non-plated through holes are often used as tooling holes or as component mounting holes.

Routing

With the steady growth of PCBs and electronic products, the need for PCB plated through holes has also grown. This technology is a very practical solution to mounting component issues. It makes the production of high quality boards quick and easy.

Unlike non-plated through holes, which are made of copper, plated through holes do not have copper-plated walls or barrels. As a result, their electrical properties are not affected. They were popular during the time when printed circuit boards had only one layer of copper, but their popularity decreased as PCB layers increased. However, they are still useful for mounting components and tools in some PCBs.

The process of making PCB plated through holes begins with drilling. To make through-hole PCBs, a drill bit box is used. The bits are tungsten-carbide and are very hard. A drill bit box contains a variety of drill bits.

Using a plotter printer

PCBs are usually multilayered and double sided, and plated through holes are a common way to create these. The plated through holes provide electrical conductivity and mechanical stability. This type of hole is often used for tooling holes or as a mounting hole for components.

When making a plated through hole, the process involves drilling a hole and assembling copper foils. This is also known as a “layup”. Layup is a critical step in the production process and requires a precision tool for the job.

Come osservare i PCB dall'esterno

Come osservare i PCB dall'esterno

Observing the pcb from the outside makes it easy to identify defects in the outer layers. It’s also easy to spot the effects of not enough gap between the components when looking at the board from the outside.

Observing a pcb from the outside can easily identify defects in the outer layers

Observing a PCB from the outside can help you spot defects in the outer layers of the circuit board. It is easier to identify these defects than they are to spot inside. PCBs are typically green in color, and they have copper traces and soldermask that make them easily recognizable. Depending on the size of the PCB, the outer layers may have varying degrees of defects.

Using x-ray inspection equipment can overcome these issues. Since materials absorb x-rays according to their atomic weight, they can be distinguished. The heavier elements, such as solder, absorb more x-rays than those that are lighter. This makes it easy to identify defects in the outer layers, while those that are made of light-weight elements are not visible to the naked eye.

Observing a PCB from the outside can help you identify defects that you might not see otherwise. One such defect is missing copper or interconnections. Another defect is a hairline short. This is a result of high complexity in the design. If these defects are not corrected before the PCB is assembled, they can cause significant errors. One way to correct these errors is to increase the clearance between copper connections and their pads.

The width of conductor traces also plays a crucial role in the functionality of a PCB. As signal flow increases, the PCB generates immense amounts of heat, which is why it is important to monitor the trace width. Keeping the width of the conductors appropriate will prevent overheating and damaging the board.