싱가포르의 전자 설계 및 제조업체

싱가포르의 전자 설계 및 제조업체

싱가포르의 전자 산업은 놀라울 정도로 활발하고 성장하는 산업입니다. 2017년에는 싱가포르 국내총생산(GDP)의 4분의 1 이상이 전자 산업에 기인했습니다. 전자 산업이 번창하는 싱가포르가 전자 제품 수출의 선두주자 중 하나인 것은 놀라운 일이 아닙니다. 이 지역에는 평판이 좋은 전자 설계 및 제조 회사가 많이 있지만, 프로젝트에 적합한 회사를 선택하는 것은 어려울 수 있습니다. 다음은 EMS 회사를 찾을 때 고려해야 할 몇 가지 사항입니다.

전자 부품의 설계, 조립 및 테스트를 전문으로 하는 EMS 기업

EMS는 전자 부품 및 제품을 설계, 제조 및 테스트하는 프로세스입니다. EMS 업체는 PCB 제조, IC 프로토타이핑, 전자 부품 조립과 같은 제조 공정의 특정 영역을 전문으로 합니다. 이들은 최종 제품이 고객의 사양을 충족하는지 확인하기 위해 다양한 PCB 조립 기술을 사용할 수 있습니다. 경우에 따라 EMS 업체는 대량 생산에 착수하기 전에 고객이 제품의 개념을 테스트할 수 있도록 프로토타입을 설계할 수 있습니다. 이러한 프로토타입은 종종 저렴한 재료를 사용하여 제작되며 최종 제품과 거의 유사할 수 있습니다.

EMS 업체는 고객과 긴밀히 협력하여 제품이 고객의 사양에 맞게 설계 및 제조될 수 있도록 합니다. 영업 담당자가 자신의 역량을 설명하고 고객의 요구 사항을 파악한 후 견적을 작성합니다. 또한 부품 공급업체와 협력하여 최저 비용과 최단 리드 타임을 확보합니다.

EMS 파트너를 선택할 때는 제품의 애프터마켓 및 서비스 요구 사항을 반드시 고려해야 합니다. EMS 파트너는 부품 노후화 및 재생산에 도움을 줄 수 있는 전담 팀을 보유하고 있어야 합니다. 또한 부품 단종 관리 및 부품 엔지니어링 관리 서비스를 포함하여 제품에 대한 전체 수명 주기 지원을 제공해야 합니다. 또한 원활한 커뮤니케이션은 프로젝트의 성공을 위해 필수적입니다.

하이테크 서비스를 제공합니다.

전자 제품의 설계 및 생산에 도움이 필요하다면 싱가포르는 훌륭한 선택입니다. 싱가포르에는 많은 첨단 전자 회사가 있습니다. 예를 들어 싱가포르에는 수많은 반도체 회사가 있습니다. 이러한 회사 중 일부는 지능적이고 에너지 효율적인 제품 개발을 전문으로 합니다.

싱가포르의 전자 산업은 제품 설계부터 제조, 유통에 이르기까지 다양한 가치 사슬 서비스를 제공하는 2900개 이상의 회사로 구성되어 있습니다. 이러한 기업들은 집적 회로 설계, 위성 통신, 무선 기술, 암호화 기술, 제품 생산 및 개발과 같은 분야를 전문으로 합니다. 옵션이 너무 많기 때문에 올바른 전자 설계 및 제조 회사를 선택하기가 어려울 수 있습니다.

평판이 좋은 싱가포르 전자 제조 회사는 EMS 회사입니다. 40년 이상의 경험을 바탕으로 혁신적이고 우수한 품질의 설계 솔루션으로 다양한 산업 분야에 서비스를 제공하고 있습니다. 전문성과 신기술로 높은 평가를 받고 있습니다. 그 결과, 이 회사는 고객의 요구를 충족하는 다양한 전자 제품과 서비스를 제공할 수 있습니다.

신용 기록이 있습니다.

싱가포르에는 기업과 개인에게 서비스를 제공하는 수많은 전자 설계 및 제조 회사가 있습니다. 이 산업은 싱가포르에서 상당히 큰 규모를 자랑하며 싱가포르 GDP의 4분의 1 이상을 차지합니다. 또한 싱가포르는 전자 제품의 주요 수출국이기도 합니다. 하지만 선택지가 너무 많기 때문에 필요에 맞는 최고의 회사를 선택하기가 어려울 수 있습니다. 싱가포르 전자 설계 및 제조 회사를 선택할 때 염두에 두어야 할 몇 가지 사항은 다음과 같습니다.

신뢰할 수 있는 업력은 전자 설계 및 제조 회사에서 찾아야 할 중요한 자질입니다. 이러한 기업은 운영 기간이 길수록 양질의 결과물을 제공할 수 있는 노하우와 프로세스를 갖추고 있을 가능성이 높습니다. 이는 고객의 신뢰와 믿음을 얻는 데 도움이 됩니다. 또한 수십 년의 경험을 가진 회사는 프로젝트의 성공을 보장하기 위해 정제된 프로세스, 기술 및 기술 노하우를 보유하고 있을 가능성이 높습니다.

고품질 제품을 제공합니다.

싱가포르의 전자 디자인 회사는 다양한 서비스와 제품을 제공합니다. 대부분 제품 개발, 제조, 유통을 포함한 가치 사슬 서비스를 제공합니다. 집적 회로 설계, 무선 기술, 위성 통신, 암호화 기술 등 다양한 산업 분야에 집중하고 있습니다. 완벽한 솔루션을 제공하는 기업도 있고 틈새 영역에 집중하는 기업도 있습니다. 이처럼 다양한 서비스를 제공하기 때문에 적합한 기업을 선택하기가 어려울 수 있습니다.

EMS Company는 싱가포르에서 가장 유명한 전자 제조업체 중 하나로, 최첨단 서비스와 제품을 제공합니다. 40년 이상 업계에 종사해 왔으며 다양한 분야에 서비스를 제공하고 있습니다. EMS Company는 새로운 기술 개발과 혁신적인 솔루션 제공에 중점을 두고 있습니다. 엔지니어링 팀은 고품질 제품을 제공하고 새로운 기술을 설계에 통합하는 데 전념하고 있습니다.

올바른 전자 설계 및 제조 회사를 찾을 때는 양질의 서비스를 제공한 이력이 있는 평판이 좋은 회사를 선택하는 것이 중요합니다. 이렇게 하면 회사가 신뢰할 수 있다는 확신을 가질 수 있습니다. 또한 수십 년 동안 사업을 운영해 온 회사는 정제된 프로세스, 기술 및 기술 노하우를 보유하고 있을 가능성이 높습니다. 평판이 좋은 회사를 이용하면 비즈니스와 재정적 미래를 보호하는 데 도움이 됩니다.

레이아웃 및 구성 요소 배선의 기본 규칙

레이아웃 및 구성 요소 배선의 기본 규칙

There are some basic rules that should be followed when designing a layout. These include keeping the power and ground planes within the board, avoiding cross-netting, and placing the most critical components first. You should also try to place ICs and large processors inside the board. By following these rules, you should have no trouble designing and creating a circuit board.

Avoid crossing nets

When wiring components together, you must avoid crossing nets. If there are vias, make sure they are far enough apart to avoid cross-netting. Another way to avoid crossing nets is to place one IC’s positive pin ahead of the other IC’s negative pin. This way, you’ll avoid crossing nets on the PCB.

Place large processors and ICs inside your board

Microprocessors, ICs, and other large electronic components are the heart of most circuits. They are ubiquitous and can be found on nearly every circuit board. They can be simple devices with just a few transistors or complex devices with millions or even billions of transistors. There are many types of ICs available, including 8-bit microcontrollers, 64-bit microprocessors, and advanced packages.

Avoid placing vias on power and ground planes

Placing vias on power and ground planes creates voids, which can create hot spots in the circuit. For this reason, it is best to keep signal lines away from these planes. A general rule of thumb is to place vias 15 mils apart. In addition, when placing signal lines, ensure there are 1350 bends per via.

In a typical PCB power distribution system, power and ground planes are located on the outer layers. These layers are characterized by their low inductance and high capacitance. In high-speed digital systems, switching noise can result. To mitigate this, use thermal relief pads to make electrical connections.

Avoid placing vias on traces

When wiring components, it is important to avoid placing vias on traces. Vias are holes drilled in the board through which thin copper wires pass and are soldered on both sides. Ideally, vias should be placed at least one-eighth wavelength away from the traces. This practice will decrease the operating temperature of the IC and make the design more reliable.

Vias are very useful in moving signals from one layer to another. Unlike traces that run from layer to layer, they are also easy to identify if any design changes are needed. Vias are the jack-of-all-trades of a PCB layout, providing electrical connectivity between layers. Additionally, they serve as an effective tool in transferring heat from one side of the board to the other.

Why Active Components Are More Expensive Than Passive Components

Why Active Components Are More Expensive Than Passive Components

Electronics are a central part of our modern world and are used in almost every industry. These devices depend on a variety of crucial components to function properly. However, active components are more expensive than passive ones. This article explores the difference between the two types of electronics components. You’ll learn why active components are more expensive and why passive ones are cheaper.

Transistors

There are two basic types of electronic components: active and passive. Active components are used to produce power, whereas passive components are used to store it. Both types are important in electronic devices, because they ensure that the electronic equipment works as expected. However, there are a few important differences between active and passive electronic components.

A transistor is an active component, and it is a semiconductor device that requires external power to function. The transistor can boost or reduce the current that flows in a circuit. A transistor can also change the direction in which electricity flows.

Inductors

Active components are those that produce current or voltage, while passive components do not. The difference between active and passive components is not just in their physical appearance; it also has to do with their function. An active component has a function to amplify power, while a passive one has no purpose.

Essentially, active components require an external source of energy to work. Passive components do not generate energy, but they do store energy and control current flow. An example of an active component would be a transistor, while a passive component would be a resistor.

Inductors filter out high-frequency signals

An inductor can be used in an electrical circuit to filter out high-frequency signals. It works by reducing the frequency of the signal to a frequency lower than the input frequency. Generally, engineers look for a ratio that goes down to 1/(2*x)1/2. They also want to know the corner frequency, which can be determined graphically. The x-axis displays the frequency, while the y-axis represents the gain.

One way to determine the inductor’s inductance is by measuring the voltage across the inductor. This will help you to determine the sensitivity of the inductor to a high-frequency signal. The inductance can also be measured by using the corner frequency. Keep in mind that the inductance is not an exact measurement, because the circuit is always subject to loss.

Transistors are amplifiers and switches

Transistors are electrical devices used to control signals. They are made up of two basic components: an emitter and a collector. The emitter part of a transistor is forward-biased, and the collector part is reverse-biased. When a transistor is operating in its active region, the collector side will show a slightly curved curve. The collector region is the most important part of a transistor since it is where the collector current is most stable.

Transistors can be classified as either p-type or n-type semiconductors. When used as switches, they function in a similar way to amplifiers. They can act as switches by changing the current passing through the base.

Inductors are non-reciprocal

Inductors are non-reciprocal if two or more of them are connected in parallel, and there is no mutual inductance between them. This means that the sum of their total inductances will be less than the sum of their individual inductances. This is the case for parallel inductors, where the coils are arranged in opposite directions.

Mutual inductance is another way to define reciprocity. An equivalent circuit is one in which the primary and secondary portions are of equal mutual inductance. In a reciprocal transformer, the second part does not lose energy during magnetic coupling, so it does not represent lumped energy.

Inductors do not require an external source of energy

Inductors store energy by changing their magnetic field strength in response to the amount of current that flows through them. The stronger the current, the stronger the magnetic field, and the more energy is stored. This property is unique to inductors compared to resistors, which generally dissipate energy in the form of heat. In addition, the amount of energy stored in an inductor depends on the amount of current flowing through it.

The main purpose of an inductor is to store energy. When electric current passes through an inductor, a magnetic field is induced in the conductor. In addition to this, the induced magnetic field opposes the rate of change in current or voltage. As a result, a steady DC current will pass through an inductor, which is symbolized by the letter L. This property makes inductors useful in large power applications where they cannot be replaced with a conventional electrical component.

PCB 설계에서 솔더 페이스트 결핍의 3대 원인 및 대책

PCB 설계에서 솔더 페이스트 결핍의 3대 원인 및 대책

PCB 설계에서 솔더 페이스트 결핍의 원인과 대책에는 여러 가지가 있습니다. 여기에는 차가운 납땜 접합부, 부정확한 배치, 납땜 중 너무 많은 열, 화학 물질 누출 등이 포함됩니다. 다음은 가장 일반적인 원인과 해결 방법 몇 가지입니다.

Cold solder joints

In order to avoid the formation of cold solder joints, PCB designers must design the PCB in such a way that all of the components are placed in similar orientations and have good component footprints. This helps to avoid problems with thermal imbalances and asymmetry in solder joints. Also, it is important to design PCBs in such a way that each component is positioned on a D-shaped pad. It is also important to avoid the use of tall components since they create cold zones in the PCB design. Moreover, components near the edge of the board are more likely to get hotter than those in the center.

A faulty solder joint can be a result of a variety of factors, including the lack of flux or a poorly bonded joint. A clean work area is essential for good solder joint quality. It is also important to re-tin the soldering tip to prevent oxidation.

화학 물질 누출

If you are a designer of PCBs, you may be interested in learning how to avoid chemical leakage. This problem is caused by solder balls, which appear as small spheres of solder that adhere to the surface of a PCB’s laminate, resist, or conductor. Due to the heat generated, the moisture near the through holes in a PCB can turn to steam and extrude the solder.

Solder bridging is another problem caused by a deficiency of solder paste. When solder cannot separate from a lead before solidifying, it forms a short circuit. While the shorts are often invisible, they can wreak havoc on a component. Several factors can cause this problem, including the number of pins on a PCB, the distance between them, and the reflow oven’s setting. In some cases, a change in materials can also cause solder bridging.

Too much heat during soldering

Solder paste can be prone to deformities when it reaches a certain temperature during soldering. Too much heat during soldering can result in solder balling and discrete deformities. Too much solder paste can also lead to too much flux outgassing. These factors can contribute to solder balling and deformities in PCB design.

Solder paste should never interact with moisture or humidity. The solder mask must be correctly positioned and the stencil bottom should be cleaned regularly. Another common PCB design error is known as the tombstone effect, or “Manhattan effect,” caused by force imbalances during soldering. The effect resembles the shape of a tombstone in a cemetery. However, it represents a defunct PCB design with an open circuit.

Cleaning the material properly after drilling

Solder paste deficiency is the result of a material being improperly cleaned after drilling. Solder wire should be at the correct temperature and ideally be completely wetted with the pads and pins. If the solder is not adequately wetted, it may lead to the formation of a solder bridge or other defects. The right amount of solder is necessary to wet the pads and pins evenly. If it is not, it can form a metal oxide layer on the bonded object. This can be fixed by cleaning the material well and by using the right soldering iron.

Insufficient solder can cause several problems with the circuit board. Inadequate solder can cause a sand hole, broken line, “blow hole” or “solder joint void.” Insufficient solder paste can also lead to the removal of tin from components. It’s essential to avoid such problems by following the PCB design process.

Preventive measures

Solder bridging occurs when solder gets into a space it shouldn’t. Solder bridging can be prevented by using larger component leads. When pads are too small, the solder has to wet a larger area and flow a smaller volume up the lead. This results in solder balls that form and cause shorts. It is important to place pads at optimal positions and use proper solder paste in the soldering process.

A lack of solder paste on the board can also cause component leads to be warmer than pads because component leads have less thermal mass and a higher flow of air around them. Increasing the soak time of solder paste will prevent this issue and equalize temperatures across the assembly. It also reduces the tendency for solder to flow towards warmer surfaces. Another prevention method is to optimize the stencil design to minimize the amount of solder paste on trouble areas. In addition to using a stencil, ensuring that the components are not damaged before placement can help reduce solder paste in problematic areas. Copper balancing can also be used to even out the heating and cooling of the PCB.