서킷 카드 어셈블리란 무엇인가요?

서킷 카드 어셈블리란 무엇인가요?

회로 카드는 전자 부품이 포함된 인쇄 회로 기판입니다. 회로 카드를 조립하는 과정에는 여러 단계가 포함됩니다. 첫 번째 단계는 회로를 설계하는 것입니다. 여기에는 전문 소프트웨어와 회로도 캡처 도구를 사용하는 것이 포함됩니다. 회로도가 준비되면 다음 단계는 PCB를 인쇄하는 것입니다. 그런 다음 구리를 에칭하고 비전도성 재료의 양면에 라미네이트하여 PCB 기판으로 사용합니다.

인쇄 회로 기판 어셈블리

인쇄 회로 기판 조립은 전자 부품을 인쇄 회로 기판에 연결하는 복잡한 공정입니다. 인쇄 회로 기판에는 전자 부품을 서로 연결하는 전도성 경로가 포함되어 있습니다. 그런 다음 이 기판을 비전도성 기판에 장착합니다. 최종 조립이 완료되면 전자 부품이 납땜되거나 보드에 삽입됩니다.

인쇄 회로 기판은 단면, 양면 또는 다층으로 구성될 수 있습니다. 단면 기판은 하나의 구리 층으로 구성되며, 양면 기판은 두 개의 층으로 구성됩니다. 다층 PCB는 내부 레이어에 더 많은 부품 밀도와 회로 추적을 허용합니다. 다층 PCB는 전자 부품 및 장치에서 점점 더 인기를 얻고 있습니다. 그러나 다층 PCB는 현장에서 수리하거나 수정하기가 어려울 수 있습니다.

PCB 조립 공정은 설계에서 시작됩니다. PCB의 구성 요소 레이아웃은 구리 층의 수와 위치에 따라 결정됩니다. 레이어가 많은 PCB는 생산이 더 복잡하고 시간이 오래 걸립니다. 레이어가 많을수록 설계자에게 더 많은 라우팅 옵션과 신호 무결성에 대한 더 나은 제어를 제공하지만 생산 비용이 더 많이 들기 때문에 레이어 수와 상호 연결 설계를 선택하는 것은 설계할 회로에 따라 달라집니다. 어셈블러는 또한 어셈블리 프로세스 중에 패널에 구성 요소를 배치합니다.

회로 카드 조립 과정

회로 카드 조립은 전자 부품을 인쇄 회로 기판(PCB)에 연결하는 프로세스입니다. 회로 카드 조립에는 회로를 제작하고, 전자 부품을 배치하고, 납땜하는 작업이 포함됩니다. 또한 최종 조립 전에 회로 카드를 청소하고 품질을 검사하는 작업도 포함됩니다.

회로 카드는 단면 또는 양면 제품일 수 있습니다. 구성 요소 또는 테스트 지점을 식별하는 실크스크린이 있을 수 있습니다. 전자 제품을 연결하는 데 사용하거나 컴퓨터의 기능을 제어하는 데 사용할 수 있습니다. 회로 기판을 조립하려면 약간의 납땜 기술과 특수 장비가 필요합니다. 또한 가는 팁이 달린 납땜 인두가 필요합니다. 미세한 팁을 사용하면 작은 부품을 납땜하고 생산 속도를 제어하기가 더 쉬워집니다. 납땜 인두를 보정하고 PCB와 부품을 예열하여 제대로 연결되도록 하는 것도 중요합니다.

회로 카드에는 PCBA 기판에 의해 함께 고정된 여러 층의 전자 부품이 있습니다. 이러한 PCBA 기판은 구리 또는 기타 전도성 재료로 만들 수 있습니다. 구리 층도 회로 기판에 적층되며 때로는 여러 층이 사용되기도 합니다. 그런 다음 구리를 솔더 마스크로 덮어 단락과 부식으로부터 부품을 보호합니다. 초창기에는 배터리나 직류로 회로에 전원을 공급했습니다. 나중에 니콜라 테슬라가 교류 전류를 발명하여 전류의 전압을 변화시킬 수 있게 되었습니다.

회로 카드 조립에 사용되는 재료

회로 카드의 조립 공정에는 다양한 재료가 사용됩니다. 가장 일반적인 것은 유전체 재료인 FR-4입니다. 구리 피복 라미네이트는 오늘날 널리 사용되는 또 다른 소재입니다. 구리 피복 라미네이트는 에칭되지 않은 구리를 포함하는 보드 스톡의 한 유형입니다.

회로 카드 조립에 사용되는 재료는 전기적 및 열적 특성에 따라 선택됩니다. 또한 정부 요건을 충족하기 위해 선택될 수도 있습니다. 예를 들어, 유럽 연합의 유해 물질 제한(RoHS) 지침은 특정 금속 및 화학 물질의 사용을 제한합니다. 재료의 성능을 평가하는 또 다른 방법으로는 UL(Underwriters Laboratories) 등급이 있습니다. 이 등급은 많은 전자 장치에 필수적입니다.

회로 카드 조립에 사용되는 재료에는 지지용 기판과 연결용 전도성 층이 있습니다. 기판은 유연하거나 융기된 형태 또는 금속 코어 보드일 수 있습니다. 그런 다음 구리를 기판에 적층합니다. PCBA의 유형에 따라 여러 개의 구리 층이 있습니다. 마지막으로 부식을 방지하고 납땜 단락의 위험을 줄이기 위해 회로 카드 표면에 솔더 마스크를 적용합니다.

회로 카드 조립 비용

회로 카드는 전자 부품을 인쇄 회로 기판의 소켓에 연결하는 전도성 경로가 있는 평평하고 얇은 유전체 재료 조각입니다. 회로 카드를 조립하는 프로세스를 회로 카드 조립(CCA)이라고 하며, 유전체 기판에 패턴을 에칭하고 전자 부품을 추가하는 작업이 포함됩니다.

회로 카드 조립 비용은 몇 가지 요인에 따라 달라집니다. 한 가지 중요한 요소는 인건비입니다. 북미의 한 조립 회사는 3일 소요되는 회로 기판당 평균 $1,100달러를 청구하는 반면, 중국에서는 동일한 수량의 경우 $545달러에 불과합니다. 또한 인건비는 지리적 위치에 따라 달라집니다. 예를 들어 북미에서는 회로 기판 1개당 약 $1,100의 비용이 드는 반면, 중국에서는 동일한 카드 어셈블리 1개당 $550의 비용이 듭니다.

PCB 조립 공정은 고도로 맞춤화되어 있으므로 인쇄 회로 기판의 비용이 증가합니다. 하지만 예산을 초과하지 않으면서 맞춤 제작이 가능한 중간 지점이 있습니다. 또한 비용 효율적인 서비스를 제공하는 계약 제조 파트너를 이용하면 PCB 조립 비용을 최소화할 수 있습니다. PCB 조립에는 자동화 기계뿐만 아니라 여러 사람의 공정도 포함됩니다.

마이크로파 PCB용 상위 8가지 재료

마이크로파 PCB용 상위 8가지 재료

If you’re in the market for a microwave PCB, it’s important to look at the materials that are used in these circuits. There are a variety of different materials available, and the best materials for a microwave PCB are determined by certain factors. For example, a material’s Er value should be less than 2.5, and it should have a low Df value, which indicates that it’s a good candidate for microwave applications. High-frequency materials should also have a low variation in Df.

Hydrocarbon-based materials

Hydrocarbon-based PCB materials can be a great option for microwave-frequency applications. Typically, these materials are compatible with standard FR4 PCB fabrication processes. In many cases, these PCB materials are preferred over PTFE or glass. However, the choice of material for your microwave-frequency circuitry should be based on the application’s requirements.

Glass fiber

This type of material has a number of advantages over the traditional copper-based substrates. It is flame-retardant and offers good thermal and mechanical properties. Glass fiber reinforced pcbs are among the top choices of manufacturers for many reasons.

Aluminum

Microwave pcbs are generally made from a thin layer of aluminum that is laminated to a thermal substrate. Thermal bonding materials can be used to bond the two layers together, and thermal materials can be laminated to one side or both sides of aluminum. Then, the laminated assembly is through-drilled and plated. Through holes in the aluminum substrate maintain electrical insulation.

Copper

Copper is one of the most popular materials for microwave PCBs, but there are also advantages to other materials for this type of design. For starters, it has a very low dielectric strength. This property limits the performance of microwave PCBs in certain applications. Secondly, copper has a high melting point, which makes it one of the most expensive materials for microwave PCBs.

FR-4 glass/epoxy

FR-4 glass/epoxy for PCBs is a high-frequency material used for PCBs. This material offers good electrical and mechanical specifications and is relatively stable over time. However, it has several disadvantages, including the tendency to quickly dull drill bits and cutting shears. Moreover, it is abrasive and glass splinters can be painful.

FR-5 glass/epoxy

Microwave PCBs require different metallization processes than traditional PCBs. In general, FR-4 glass/epoxy material is preferred. It is a low-cost and flame retardant material that has been the industry standard for decades.

FR-2 glass/epoxy

When choosing the material for a microwave PCB, it’s important to understand the range of properties that this material can offer. Glass/epoxy is a flexible circuit material with low dielectric losses at microwave frequencies. FR-4 is a glass fabric-reinforced laminate bonded with flame-resistant epoxy resin. The National Electrical Manufacturers Association has designated this material as UL94VO-compliant and it is a good choice for microwave PCBs.

FR-3 glass/epoxy

FR-3 glass/epoxy for the manufacture of microwave PCBs is a high-performance material that is derived from woven glass reinforced material and an epoxy resin binder. This material has exceptional mechanical properties, including resistance to high temperatures. It is also known for its low moisture absorption, chemical resistance, and immense strength. By comparison, FR-1 and FR-2 are paper-based materials with lower glass transition temperatures.

5G의 다양한 주파수 대역에서의 PCB 회로 재료 선택과 그 영향

5G의 다양한 주파수 대역에서의 PCB 회로 재료 선택과 그 영향

The 5G switchover will be an important decision for many industries, but the switchover will depend on their applications and operations. Some industries need to adopt the new technology quickly to remain competitive, while others may want to take their time. Regardless of which industry you are in, you should consider the potential costs associated with using new high-speed materials. Stack-up time for PCBs may increase significantly with high-speed materials, so it is worth taking your time to make the right decision.

유전 상수

When it comes to PCB material selection, the dielectric constant is an important consideration. It determines how quickly the material will expand and contract when exposed to a change in temperature. The thermal conductivity rate of PCB materials is typically measured in watts per meter per Kelvin. Different dielectric materials will have different thermal conductivity rates. Copper, for example, has a thermal conductivity of 386 W/M-oC.

When selecting PCB materials, remember that the effective dielectric constant of the substrate affects the speed of electromagnetic waves. The dielectric constant of the PCB substrate material and trace geometry will determine how quickly a signal can travel across the circuit.

The dielectric constant is a key consideration when selecting PCB materials for 5G networking. High permittivity will absorb electromagnetic signals and degrade the sensitivity of communications. Therefore, it’s crucial to choose PCB materials that have low permittivity.

Trace thickness

The frequency range of the 5G technology is larger than the previous wireless communication techniques. This means that shorter structures are susceptible to being excited by the signals. Typically, the wavelength of a single PCB trace is one centimeter. With this frequency range, a single trace can be a great reception antenna. However, as the frequency range broadens, the susceptibility of a PCB trace increases. Thus, it is essential to determine the best shielding approach.

The frequency bands of the 5G standard are divided into two parts – the low band and the high band. The first band is the millimeter-wave region, while the second band is below the 6GHz threshold. The band centered around 30 GHz and 77 GHz will be used for the mobile network.

The second band is low band, which is commonly used in the energy sector to communicate with remote wind farms, mining operations, and oil fields. It is also used to connect smart sensors in agriculture. Mid-band 5G, which transmits around 1.7GHz to 2.5GHz, provides a good balance between speed and coverage. It is designed to cover large areas and offer relatively high speeds, which are still faster than what you can get with home internet.

비용

When it comes to manufacturing electronic products, the choice of materials for PCBs is critical. There are many challenges when manufacturing at high frequency bands, such as 5G. Fortunately, PCBA123 has created families of materials that meet the requirements for this new frequency range.

The higher carrier frequencies used in 5G networks will enable higher data rates and lower latency. This will allow for greater connectivity for a much larger number of devices. This means that 5G may well be the standard for the Internet of Things. However, as the frequency band increases, so too does the complexity of the devices.

Fortunately, there are some ways to reduce the cost of PCBs. For example, one option is to use low-loss liquid crystal polymers, which have a lower Tg. While this option can lower costs, it can introduce new permittivity concerns. Alternatively, manufacturers can use flexible ceramics and polyimides, which are better suited for low-temperature applications.

Thermal expansion

High-frequency PCB circuits require materials with different thermal expansion characteristics. While FR-4 is the most common material used in high-frequency circuits, there are also many other materials that can be used to minimize loss. Among these materials are pure polytetrafluoroethylene (PTFE), ceramic-filled PTFE, hydrocarbon ceramic, and high-temperature thermoplastic. These materials vary in Dk values, and the loss factor is based on surface contaminants, laminate hygroscopicity, and manufacturing temperature.

PCB circuit materials used in 5G technologies have to be resistant to higher temperature variations. Increasing thermal resistance will allow circuit boards to be processed using existing circuit board processing facilities. In addition, 5G technologies will require higher-quality PCB materials. For example, Isola MT40 is a material with a low coefficient of thermal expansion in the thickness direction, with a Dk/Df of 0.03, indicating that it is appropriate for high-frequency applications.

To ensure signal integrity, 5G systems will require high-speed and high-frequency components. With effective thermal management, these components can be designed to perform at the highest speed possible. Thermal conductivity, or TCR, is a property that measures the dielectric constant of a substrate in relation to temperature. When a circuit is under high-frequency operation, it generates heat and loses dielectric performance.

고속 PCB 설계를 시작하기 위한 3가지 개념

고속 PCB 설계를 시작하기 위한 3가지 개념

Before you get started with high speed PCB design, there are a few basic concepts you need to understand. These include Impedance calculations, Schematics, and the Footprint assignment tool. You’ll also want to consider the importance of maintaining the length of traces.

Schematics

Schematics play a vital role in PCB design. They help communicate design issues and ensure that the final PCB meets all of the necessary specifications. In addition, they provide an appropriate framework for high-speed designs. If you’re unsure about the best way to organize high-speed circuitry, consider reading up on some of the most important concepts regarding schematics.

When designing circuits for high-speed PCBs, it’s important to group components and circuit flows into logical groups. This will help you layout the circuits on the board. You can also group certain sensitive components together. In contrast, if the design is for a low-speed product, circuit flow may not be a major concern. Instead, you may be more concerned about making the most of the space on the schematic sheet.

When designing high-speed PCBs, you need to carefully consider the routing process. Different techniques are employed for this process, so be sure to collaborate with experts in the field. For example, you should place a central processor near the center of the board, where it will interface with the rest of the components on the board. Then, you can place the peripherals around it.

Impedance calculations

Impedance calculations for high speed PCB designs are necessary for high-speed PCB designs. The calculation involves the dielectric constant and the width of the trace. These values are then used in the design process to determine the final impedance. A PCB design can be simplified by using a stack-up editor, which has an in-built impedance calculator.

In addition to impedance calculations, signal integrity tools and impedance-controlled routing are also essential for high-speed PCB designs. Without proper impedance control, a circuit can’t be designed effectively. This can result in poor signal integrity. Managing all the parameters of a board can be time-consuming.

In high-speed PCB designs, it is imperative to make sure that the impedances of the signals on board are within one order of magnitude. The impedance of a CPCI signal line, for example, should be 65Ohms, while the impedance of the differential signal should be 100 ohms. The impedance of other signals on the board must be at least 50 ohms. In addition, the PCB routing space should be at least ten layers. This is because each signal layer has an adjacent image plane and a complete ground layer. To achieve this, a PCB design must balance the traces to maximize the density.

Footprint assignment tool

For a high-speed PCB design project to be successful, it is important to understand how signals are manipulated on the board. The signals must arrive at the proper timing, and any errors can cause data to be corrupted. Moreover, improperly arranged traces can cause other signals to interfere. Therefore, high-speed PCB design requires careful evaluation on a case-by-case basis.

 

PCB 디자이너란?

PCB 디자이너란?

In this article, we will discuss what is a PCB designer, where they are located, what computer software they use, and what career opportunities are available. PCB designers are responsible for the design of printed circuit boards. They also use design rule checks to ensure that placement and routing are correct. This can help reduce the number of manufacturing re-spins.

Printed circuit board designer

When creating a printed circuit board, an engineer must be creative and provide innovative solutions. They must work with a schematic, part lists, and basic description of the board’s function to develop a design that meets the client’s needs. In addition, a printed circuit board engineer must establish design standards, use CAD/CAM software, and verify completed design elements. Other important tasks include checking dimensions, quantities, and materials.

A printed circuit board designer is someone who designs and places printed circuit boards. They use computer-aided drafting (CAD) programs to create a computerized design that allows them to accurately place parts. They must also be creative and determine how the parts should be arranged to meet the specifications of the client. Depending on the product, a designer might work independently or for a company. They may be expected to use CAD software to create custom designs or optimize a preexisting design.

The CAD software used for designing a PCB requires the PCB designer to prepare a library of parts. These library parts include resistors, capacitors, connectors, and integrated circuits. These parts must be placed in the right place to achieve the most efficient functionality.

Place and route of pcb designer

PCB designers must possess a strong understanding of electronics and CAD software. They should also have sufficient experience with RF and analog layouts. Moreover, they should be knowledgeable about the common design rules related to PCBs. In addition, they should be well versed in working with engineering drawings and libraries. They must also be familiar with the concept of BOM and Configuration Management.

Computer software used by pcb designer

The PCB designer uses a variety of tools and software to create circuit boards. PCB design software can automate processes and improve quality. It also allows designers and stakeholders to see changes and ensure that all project specifications are met. In addition to creating circuit boards, PCB design software also helps engineers collaborate on projects.

PCB design software can range in cost and features. Choose a program that is suitable for your needs. Some software is free, while others require a small investment. You should also consider the operating system you’re using. Some PCB design software is compatible with MacOS and Linux, but others require a Windows OS.

Some PCB designer software has advanced features that make it easy to create complex circuit boards. Some of these tools also export designs in multiple formats. Make sure that the PCB design software offers extensive support and has a large library of standard parts. This will help you avoid having to reinvent the wheel each time you want to make a new part.

Career opportunities for pcb designer

There are a variety of PCB design jobs available. These designers work with a variety of people, including engineers and other designers, to create the perfect board. They must be excellent communicators to ensure that the final design meets all specifications. They also communicate with clients and manufacturers to explain how their designs will benefit the final product. A good PCB designer should have excellent verbal and written communication skills.

Education is also a vital part of a PCB designer’s career. In addition to a bachelor’s degree, a PCB designer can pursue additional certifications and learning courses to increase their knowledge of PCB design. These courses can provide specialized training in PCB tools and technology trends. Some of these programs are offered online by a variety of institutions.

A PCB designer must have extensive knowledge of electronics and CAD software. They should also have a working knowledge of RF and analog layouts. It is also important that a designer knows how to create the PCB’s design on software, and be able to view the physical version of the PCB in a digital format to check for errors. This type of expertise is important, because it will allow the designer to save time and money on the creation of circuit boards.