Grundläggande regler för layout och kabeldragning av komponenter

Grundläggande regler för layout och kabeldragning av komponenter

Det finns några grundläggande regler som bör följas när man utformar en layout. Dessa inkluderar att hålla ström- och jordplanen inom kortet, undvika korsnätning och placera de mest kritiska komponenterna först. Du bör också försöka placera ICs och stora processorer inuti kortet. Om du följer dessa regler bör du inte ha några problem med att designa och skapa ett kretskort.

Avoid crossing nets

When wiring components together, you must avoid crossing nets. If there are vias, make sure they are far enough apart to avoid cross-netting. Another way to avoid crossing nets is to place one IC’s positive pin ahead of the other IC’s negative pin. This way, you’ll avoid crossing nets on the PCB.

Place large processors and ICs inside your board

Microprocessors, ICs, and other large electronic components are the heart of most circuits. They are ubiquitous and can be found on nearly every circuit board. They can be simple devices with just a few transistors or complex devices with millions or even billions of transistors. There are many types of ICs available, including 8-bit microcontrollers, 64-bit microprocessors, and advanced packages.

Avoid placing vias on power and ground planes

Placing vias on power and ground planes creates voids, which can create hot spots in the circuit. For this reason, it is best to keep signal lines away from these planes. A general rule of thumb is to place vias 15 mils apart. In addition, when placing signal lines, ensure there are 1350 bends per via.

In a typical PCB power distribution system, power and ground planes are located on the outer layers. These layers are characterized by their low inductance and high capacitance. In high-speed digital systems, switching noise can result. To mitigate this, use thermal relief pads to make electrical connections.

Avoid placing vias on traces

When wiring components, it is important to avoid placing vias on traces. Vias are holes drilled in the board through which thin copper wires pass and are soldered on both sides. Ideally, vias should be placed at least one-eighth wavelength away from the traces. This practice will decrease the operating temperature of the IC and make the design more reliable.

Vias are very useful in moving signals from one layer to another. Unlike traces that run from layer to layer, they are also easy to identify if any design changes are needed. Vias are the jack-of-all-trades of a PCB layout, providing electrical connectivity between layers. Additionally, they serve as an effective tool in transferring heat from one side of the board to the other.

Varför aktiva komponenter är dyrare än passiva komponenter

Varför aktiva komponenter är dyrare än passiva komponenter

Elektronik är en central del av vår moderna värld och används i nästan alla branscher. För att de ska fungera korrekt är de beroende av en mängd olika komponenter. Aktiva komponenter är dock dyrare än passiva. Den här artikeln förklarar skillnaden mellan de två typerna av elektronikkomponenter. Du får veta varför aktiva komponenter är dyrare och varför passiva är billigare.

Transistorer

Det finns två grundläggande typer av elektroniska komponenter: aktiva och passiva. Aktiva komponenter används för att producera ström, medan passiva komponenter används för att lagra den. Båda typerna är viktiga i elektroniska apparater, eftersom de säkerställer att den elektroniska utrustningen fungerar som förväntat. Det finns dock några viktiga skillnader mellan aktiva och passiva elektroniska komponenter.

En transistor är en aktiv komponent, och det är en halvledaranordning som kräver extern ström för att fungera. Transistorn kan öka eller minska den ström som flödar i en krets. En transistor kan också ändra riktningen i vilken elektriciteten flödar.

Induktorer

Aktiva komponenter är sådana som producerar ström eller spänning, medan passiva komponenter inte gör det. Skillnaden mellan aktiva och passiva komponenter ligger inte bara i deras fysiska utseende, utan även i deras funktion. En aktiv komponent har till uppgift att förstärka effekten, medan en passiv komponent inte har något syfte.

Aktiva komponenter kräver i princip en extern energikälla för att fungera. Passiva komponenter genererar ingen energi, men de lagrar energi och styr strömflödet. Ett exempel på en aktiv komponent är en transistor, medan en passiv komponent är ett motstånd.

Induktorer filtrerar bort högfrekventa signaler

En induktor kan användas i en elektrisk krets för att filtrera bort högfrekventa signaler. Den fungerar genom att minska signalens frekvens till en frekvens som är lägre än ingångsfrekvensen. I allmänhet letar ingenjörer efter ett förhållande som går ner till 1/(2*x)1/2. De vill också veta hörnfrekvensen, som kan bestämmas grafiskt. X-axeln visar frekvensen, medan Y-axeln visar förstärkningen.

Ett sätt att bestämma induktorns induktans är att mäta spänningen över induktorn. Detta hjälper dig att bestämma induktorns känslighet för en högfrekvent signal. Induktansen kan också mätas med hjälp av hörnfrekvensen. Tänk på att induktansen inte är en exakt mätning, eftersom kretsen alltid är utsatt för förluster.

Transistorer är förstärkare och omkopplare

Transistorer är elektriska enheter som används för att styra signaler. De består av två grundläggande komponenter: en emitter och en kollektor. Emitterdelen av en transistor är framåtspänd och kollektordelen är bakåtspänd. När en transistor arbetar i sitt aktiva område kommer kollektorsidan att visa en svagt böjd kurva. Kollektorområdet är den viktigaste delen av en transistor eftersom det är där kollektorströmmen är mest stabil.

Transistorer kan klassificeras som halvledare av antingen p-typ eller n-typ. När de används som brytare fungerar de på samma sätt som förstärkare. De kan fungera som omkopplare genom att ändra den ström som passerar genom basen.

Induktorer är icke-reciproka

Induktorer är icke-reciproka om två eller flera av dem är parallellkopplade och det inte finns någon ömsesidig induktans mellan dem. Detta innebär att summan av deras totala induktanser blir mindre än summan av deras individuella induktanser. Detta är fallet för parallella induktorer, där spolarna är anordnade i motsatta riktningar.

Ömsesidig induktans är ett annat sätt att definiera reciprocitet. En ekvivalent krets är en krets där den primära och sekundära delen har samma ömsesidiga induktans. I en reciprok transformator förlorar den andra delen ingen energi under den magnetiska kopplingen, så den representerar inte klumpad energi.

Induktorer kräver ingen extern energikälla

Induktorer lagrar energi genom att ändra magnetfältets styrka beroende på hur mycket ström som flödar genom dem. Ju starkare ström, desto starkare magnetfält och desto mer energi lagras. Denna egenskap är unik för induktorer jämfört med resistorer, som i allmänhet avger energi i form av värme. Dessutom beror mängden energi som lagras i en induktor på mängden ström som flödar genom den.

Huvudsyftet med en induktor är att lagra energi. När elektrisk ström passerar genom en induktor induceras ett magnetfält i ledaren. Dessutom motverkar det inducerade magnetfältet förändringen av ström eller spänning. Resultatet blir att en jämn likström passerar genom en induktor, som symboliseras av bokstaven L. Denna egenskap gör induktorer användbara i stora kraftapplikationer där de inte kan ersättas med en konventionell elektrisk komponent.

De 3 främsta orsakerna och motåtgärderna till brister i lödpasta vid PCB-design

De 3 främsta orsakerna och motåtgärderna till brister i lödpasta vid PCB-design

There are several causes and countermeasures for solder paste deficiency in a PCB design. These include cold solder joints, inaccurate placement, too much heat during soldering, and chemical leakage. Here are some of the most common causes and how to resolve them.

Cold solder joints

In order to avoid the formation of cold solder joints, PCB designers must design the PCB in such a way that all of the components are placed in similar orientations and have good component footprints. This helps to avoid problems with thermal imbalances and asymmetry in solder joints. Also, it is important to design PCBs in such a way that each component is positioned on a D-shaped pad. It is also important to avoid the use of tall components since they create cold zones in the PCB design. Moreover, components near the edge of the board are more likely to get hotter than those in the center.

A faulty solder joint can be a result of a variety of factors, including the lack of flux or a poorly bonded joint. A clean work area is essential for good solder joint quality. It is also important to re-tin the soldering tip to prevent oxidation.

Kemiskt läckage

If you are a designer of PCBs, you may be interested in learning how to avoid chemical leakage. This problem is caused by solder balls, which appear as small spheres of solder that adhere to the surface of a PCB’s laminate, resist, or conductor. Due to the heat generated, the moisture near the through holes in a PCB can turn to steam and extrude the solder.

Solder bridging is another problem caused by a deficiency of solder paste. When solder cannot separate from a lead before solidifying, it forms a short circuit. While the shorts are often invisible, they can wreak havoc on a component. Several factors can cause this problem, including the number of pins on a PCB, the distance between them, and the reflow oven’s setting. In some cases, a change in materials can also cause solder bridging.

Too much heat during soldering

Solder paste can be prone to deformities when it reaches a certain temperature during soldering. Too much heat during soldering can result in solder balling and discrete deformities. Too much solder paste can also lead to too much flux outgassing. These factors can contribute to solder balling and deformities in PCB design.

Solder paste should never interact with moisture or humidity. The solder mask must be correctly positioned and the stencil bottom should be cleaned regularly. Another common PCB design error is known as the tombstone effect, or “Manhattan effect,” caused by force imbalances during soldering. The effect resembles the shape of a tombstone in a cemetery. However, it represents a defunct PCB design with an open circuit.

Cleaning the material properly after drilling

Solder paste deficiency is the result of a material being improperly cleaned after drilling. Solder wire should be at the correct temperature and ideally be completely wetted with the pads and pins. If the solder is not adequately wetted, it may lead to the formation of a solder bridge or other defects. The right amount of solder is necessary to wet the pads and pins evenly. If it is not, it can form a metal oxide layer on the bonded object. This can be fixed by cleaning the material well and by using the right soldering iron.

Insufficient solder can cause several problems with the circuit board. Inadequate solder can cause a sand hole, broken line, “blow hole” or “solder joint void.” Insufficient solder paste can also lead to the removal of tin from components. It’s essential to avoid such problems by following the PCB design process.

Preventive measures

Solder bridging occurs when solder gets into a space it shouldn’t. Solder bridging can be prevented by using larger component leads. When pads are too small, the solder has to wet a larger area and flow a smaller volume up the lead. This results in solder balls that form and cause shorts. It is important to place pads at optimal positions and use proper solder paste in the soldering process.

A lack of solder paste on the board can also cause component leads to be warmer than pads because component leads have less thermal mass and a higher flow of air around them. Increasing the soak time of solder paste will prevent this issue and equalize temperatures across the assembly. It also reduces the tendency for solder to flow towards warmer surfaces. Another prevention method is to optimize the stencil design to minimize the amount of solder paste on trouble areas. In addition to using a stencil, ensuring that the components are not damaged before placement can help reduce solder paste in problematic areas. Copper balancing can also be used to even out the heating and cooling of the PCB.

The Main Four Methods of Electroplating in the Circuit Board

The Main Four Methods of Electroplating in the Circuit Board

Electroplating on a circuit board can be done in various ways. There are Thru-hole, Cleaning, and Electroless methods. Each method is used to cover different areas of the board. The methods differ slightly from one another, so it’s best to understand the differences in order to make a good decision.

Thru-hole plating

Thru-hole electroplating is a process for electroplating copper on circuit boards. This process involves a series of baths in which the boards are immersed in a chemical solution. This process aims to coat the entire board with copper. During the process, the boards are cleaned to remove all drilling residue, such as burrs and residual resin inside the holes. The fabricators use various chemical agents and abrasive processes to remove any contaminants.

Thru-hole electroplating involves a special low-viscosity ink that forms a highly adherent and conductive film on the inner walls of the hole. This process eliminates the need for multiple chemical treatments. It is an easy process because it only requires one application step followed by thermal curing. The resulting film covers the entire interior wall of the hole. Moreover, its low viscosity allows it to bond to even the most thermally polished holes.

As a result, it is vital to choose a reputable company that offers PCB fabrication. After all, a substandard board may disappoint customers and cost a company money. Besides, it is also necessary to have high-quality processing equipment in the board manufacturing process.

To start the process, you must cut a laminate slightly larger than the size of your board. Afterwards, you must drill the hole in the board with an exact drill bit. Do not use a larger drill bit, as it will destroy the copper in the hole. You can also use tungsten carbide drill bits to make a clean hole.

Electroless plating

Electroless plating is a process that is widely used in the production of printed circuit boards. The main purpose of electroless plating is to increase the copper layer’s thickness, which is usually one mil (25.4 um) or more. This method involves the use of special chemicals to increase the copper layer’s thickness throughout the printed circuit board.

The nickel that is applied in electroless plating acts as a barrier to prevent copper from reacting with other metals, including gold. It is deposited onto the copper surface using an oxidation-reduction reaction, and the result is a layer of electroless nickel that is between three and five microns thick.

Unlike the electroplating method, electroless plating is a fully automated process and does not require any external current supply. The process is autocatalytic and is performed by immersing the circuit board in a solution containing a source metal, a reducing agent, and a stabiliser. The resulting metallic ions attract one another and release energy through a process known as charge transfer. The process can be controlled using a number of parameters, each of which has a specific role to play on the outcome.

The electroless plating process has numerous benefits, including improved deposit quality, uniformity regardless of substrate geometry, and excellent corrosion, wear, and lubricity. Electroless plating also enhances the solderability and ductility of components, and has numerous applications in electronics.

Cleaning plating

Cleaning electroplating on circuit boards requires special care. The first step is to thoroughly wet the board. Then, use a hand brush to scrub the contaminated area. The second step is to rinse the board thoroughly, so that any remaining solvated flux flows off completely. In this way, the board will be thoroughly clean.

The next step involves removing the resist from the board. This step is essential to ensuring good electrical connection. A copper solvent is used to dissolve the resist on the board. Once the copper is exposed, it will conduct electricity. This process will remove the smear and ensure that the board is clean and ready to be plated.

Cleaning electroplating in circuit boards involves rinsing the board and using an acidic solution that contains ions of nickel and other transition metals. In addition, a reducing agent, such as dimethylamineborane, is used. Butyl Carbitol and other conventional cleaning agents are also used.

For the most precise cleaning, vapor degreasing can be used. The PCBs are immersed in a solvent and rinsed by its vapors. However, this procedure can be risky if the solvent is flammable. To avoid flammability, it is recommended to use nonflammable flux removers. You can also use cotton or foam swabs saturated with mild solvents. Most of these solvents are water-based.

How to Do ESD Protection During SMT Assembly

How to Do ESD Protection During SMT Assembly

Electrostatic damage is a major cause of device failure. It is responsible for causing direct failures in as much as 10% of electronic devices. It can cause problems throughout the SMT assembly process. Fortunately, there are ways to protect yourself from this problem.

Static protective material

It is imperative to protect electronic components from electrostatic discharge (ESD), which can lead to damage and failure. Static electricity can be generated at any time or place, and is often caused by friction. It is important to protect electronic devices during the SMT assembly process, so they can maintain optimum performance and reliability. Static protective material should be used from the beginning of the assembly process, and should be continued after completion.

The RH of the manufacturing environment also plays a vital role in the generation of ESD, so the factory’s RH should be carefully controlled. If the RH is not maintained correctly, it can result in very high levels of ESD. It is also recommended to keep materials with high levels of static electricity away from the assembly line. To protect your electronics from ESD, you should use static protective material during the assembly process.

ESD suppression components

To prevent damage from ESD during the SMT assembly process, the components should be stored and transported in ESD-proof bags. Professional assemblers are highly recommended for such work.

To prevent static electricity, assembly employees should wear anti-static clothing. They should also avoid touching the components with sharp objects. Anti-static clothing can also act as a grounding circuit for electronic devices. In addition to wearing conductive clothing, assembly personnel should wear a protective suit and shoes to reduce the risk of static electricity. It is also important to minimize the use of insulating materials.

Static electricity can occur because of metal components, which conduct an electrostatic charge. It can also be caused by induction or body static. The effects can be harmful, particularly to electronic components.

Static protective foam

Electrostatic discharge (ESD) can cause costly damage to electronics. While there are ways to prevent this, it is not possible to shield every device from the effects of ESD. Fortunately, anti-static foams, also known as electrostatic discharge foams, are available to protect sensitive components.

To minimize the risks associated with ESD, use protective packaging for electronic components. Make sure that the packaging is made of appropriate surface and volume resistivity. It should also resist triboelectric charging effects from movement during transit. Typically, electrostatic sensitive components are supplied in black conductive foam or an anti-static bag. Anti-static bags contain partially-conductive plastic that acts as a Faraday cage.

Static electricity is a common problem during the SMT assembly process. It is a byproduct of friction and can cause components to fail. Human movement generates static electricity that can range from a few hundred volts to several thousand volts. This damage can affect electronic components resulting from SMT assembly and can result in premature failure.

ESD bags

When working with electronics, it is important to use ESD protective packaging when transporting and storing susceptible items. ESD protection can help minimize the risk of electrical shocks and burns, while also providing transport and storage protection. A protective package can also protect the parts and components while they are not in use, such as when they are being transported to and from the factory.

While handling a PCB, it is important to follow the manufacturer’s instructions and follow their guidelines. This is essential because a poor ESD protection plan can result in damage to electronic components. If you are unsure of how to properly handle the components during the assembly process, ask a professional.

Combination of both

To avoid static electricity during SMT assembly, it is essential to ground the electronics. Grounding can be of two types, soft grounding and hard grounding. Soft grounding means connecting the electronic devices to a low-impedance ground, while hard grounding means connecting the electronic components to a high-impedance ground. Both types of grounding can prevent static electricity and protect electronic components from damage.

ESD is a major source of damage in the electronics industry. ESD causes performance degradation and even component failure. It’s estimated that 8% to 33% of all electronics failures are caused by ESD. Controlling this type of damage can improve efficiency, quality, and profits.

How Do We Distinguish the DC Resistance and Dynamic Resistance of a Semiconductor Diode?

How Do We Distinguish the DC Resistance and Dynamic Resistance of a Semiconductor Diode?

In order to understand how the resistance of a semiconductor diode varies with current and voltage, we need to distinguish the two different types of resistance. The two types of resistance are static and dynamic. Dynamic resistance is much more variable than static resistance, so we must distinguish the two with care.

Zener impedance

The Zener impedance of semiconductor diode is a measure of the apparent resistance of a semiconductor diode. It is calculated by measuring the ripple in the input and the change in the source current. For example, if the source current changes from three to five milliamps to seven milliamps, the ripple in the output will be about three-half milliamps. The dynamic resistance of a zener diode is equal to 14 ohms.

The breakdown of the zener impedance of a semiconductor diode occurs when a reverse biased voltage is applied to it. At this voltage, the electric field in the depletion region is strong enough to pull electrons from the valence band. The free electrons then break the bond with their parent atom. This is what causes the flow of electric current through a diode.

When working with a buck circuit, the zener impedance of a semiconductor diode is an important parameter. It can affect the efficiency of a simple buck circuit. If it is too high, the diode may fail to work. If this happens, it is best to reduce the current.

The zener effect is most prominent when the voltage of a diode is below 5.5 volts. At higher voltages, the avalanche breakdown becomes the primary effect. The two phenomena have opposite thermal characteristics, but if the zener diode is nearer to six volts, it can perform very well.

Analyze the Role of Layered Stack Design in Suppressing EMI

Analyze the Role of Layered Stack Design in Suppressing EMI

Layered stack design is the process of using a PCB with many layers to improve signal integrity and reduce EMI. A general purpose high-performance 6-layer board, for example, lays the first and sixth layers as ground and power layers. In between these two layers is a centered double microstrip signal line layer that provides excellent EMI suppression. However, this design has its disadvantages, including the fact that the trace layer is only two layers thick. The conventional six-layer board has short outer traces that can reduce EMI.

Impedance analysis tool

If you’re looking for a PCB design tool to minimize your PCB’s susceptibility to EMI, you’ve come to the right place. Impedance analysis software helps you determine the correct materials for your PCB and determine which configuration is most likely to suppress EMI. These tools also allow you to design your PCB’s layered stack in a way that minimizes the effects of EMI.

When it comes to PCB layered stack design, EMI is often a major concern for many manufacturers. To reduce this problem, you can use a PCB layered stack design with a three to six-mil separation between adjacent layers. This design technique can help you minimize common-mode EMI.

Arrangement of plane and signal layers

When designing a PCB, it is vital to consider the arrangement of plane and signal layers. This can help to minimize the effect of EMI. Generally, signal layers should be located adjacent to power and ground planes. This allows for better thermal management. The signal layer’s conductors can dissipate heat through active or passive cooling. Similarly, multiple planes and layers help to suppress EMI by minimizing the number of direct paths between signal layers and power and ground planes.

One of the most popular PCB layered stack designs is the six-layer PCB stackup. This design provides shielding for low-speed traces and is ideal for orthogonal or dual-band signal routing. Ideally, higher-speed analog or digital signals should be routed on the outer layers.

Impedance matching

PCB layered stack design can be a valuable tool in suppressing EMI. The layered structure offers good field containment and set of planes. The layered structure allows for low-impedance connections to GND directly, eliminating the need for vias. It also allows higher layer counts.

One of the most critical aspects of PCB design is impedance matching. Impedance matching allows the PCB traces to match the substrate material, thus keeping the signal strength within the required range. Signal integrity is increasingly important as switching speeds increase. This is one of the reasons why printed circuit boards can no longer be treated as point-to-point connections. Since the signals are moving along traces, the impedance can change significantly, reflecting the signal back to its source.

When designing PCB layered stacks, it is important to consider the inductance of the power supply. High copper resistance on the power supply increases the likelihood of differential mode EMI. By minimizing this problem, it is possible to design circuits that have fewer signal lines and shorter trace lengths.

Controlled impedance routing

In the design of electronic circuits, controlled impedance routing is an important consideration. Controlled impedance routing can be achieved by using a layered stack up strategy. In a layered stack up design, a single power plane is used to carry the supply current instead of multiple power planes. This design has several advantages. One of these is that it can help avoid EMI.

Controlled impedance routing is an important design element for suppressing EMI. Using planes separated by three to six mils can help contain magnetic and electric fields. Furthermore, this type of design can help lower common-mode EMI.

Protection of sensitive traces

Layered stack design is a critical element in suppressing EMI. A good board stack-up can achieve good field containment and provide a good set of planes. But, it must be designed carefully to avoid causing EMC problems.

Generally, a 3 to 6-mil separated plane can suppress high-end harmonics, low transients, and common-mode EMI. However, this approach is not suitable for suppressing EMI caused by low-frequency noises. A three to six-mil-spaced stack up can only suppress EMI if the plane spacing is equal to or greater than the trace width.

A high-performance general-purpose six-layer board design lays the first and sixth layers as the ground. The third and fourth layers take the power supply. In between, a centered double microstrip signal line layer is laid. This design provides excellent EMI suppression. However, the disadvantage of this design is that the trace layer is only two layers thick. Therefore, the conventional six-layer board is preferred.

3 Tips For PCB Drawing Beginners

3 Tips For PCB Drawing Beginners

For beginners, it is important to follow a few basic principles when drawing PCBs. These include the use of multiple grids, keeping parts 50 meters apart, and using 45-degree angle traces. The ancients once said that ice is difficult to break, but you can break it with persistence and perseverance.

Basic principles

När du skapar ett mönsterkort är det viktigt att känna till de grundläggande principerna för mönsterkortsritning. Dessa riktlinjer tar upp viktiga ämnen som storlek och form på ett mönsterkort. De tar också upp frågor som placering av komponenter och sammankopplingar. Storleken och formen på ditt mönsterkort bör vara lämplig för den tillverkningsprocess som det kommer att genomgå. Dessutom måste du ta hänsyn till referenspunkter som kommer att vara nödvändiga under PCB-tillverkningsprocessen, till exempel hål för fixturer eller korsade märken för optiska sensorer. Det är viktigt att se till att dessa punkter inte stör komponenterna.

Ett korrekt arrangemang av komponenterna på kortet bör resultera i ett effektivt flöde av ström och data. Det innebär att ledningarna ska placeras så jämnt som möjligt. Ledningsdragningen ska ske minst 1 mm från PCB-kortets kant och runt eventuella monteringshål. Signalledningarna ska vara radiella och inte se ut som loopbacks.

Använda spår med 45 graders vinkel

Om du är nybörjare på PCB-ritning bör du vara försiktig med att använda 45-graders vinkel. Dessa spår kan ta upp mer utrymme än andra vinklar och är inte idealiska för alla tillämpningar. Men 45-gradersvinklar är en mycket bra designmetod i många situationer.

Ett av de främsta skälen till att använda 45-gradersvinklar i PCB-ritningar är säkerhetsfaktorn. Eftersom dessa spår är mycket smalare än standardspår, bör du inte göra några skarpa svängar. Detta beror på att kortets tillverkningsprocess etsar kortets yttre hörn smalare. En enkel lösning på detta problem är att använda två 45-graders böjar med ett kort ben emellan. Du kan sedan lägga text på det översta lagret av brädan för att göra det tydligare vilket lager som är vilket.

Ett annat skäl till att använda 45-gradiga spår är att spårens bredd påverkas mindre. Anledningen till detta är att 90-gradersvinklar resulterar i etsade spetsar, vilket kan orsaka kortslutningar. Genom att använda 45-graders vinkel minskar routingjobbet för tillverkaren. Med 45 graders vinkel kan all koppar på kortet etsas utan problem.

Använda snap grid

Att använda snap grids för nybörjare inom PCB-ritning kan vara till stor hjälp. Det gör att du enkelt kan justera layouten och hålla komponenterna snygga och symmetriska. Vissa avancerade program för PCB-design har snabbtangenter för att växla rutnätsstorlek. Du kan också växla till uppifrån och ned eller "genom kortet", vilket kräver att du ser det undre lagret som spegelbilder. Detta tillvägagångssätt bör endast användas som en sista utväg.

Nybörjare på PCB-ritning kan ställa in standardstorleken för Snap Grid, som vanligtvis är 0,250 ″. Dessutom kan användarna ändra snap grid-avståndet till 0,25 tum. Det rekommenderas dock att du stänger av snap grid-funktionen om du planerar att ansluta spår till delar som har ovanligt stiftavstånd.

Hur man förstår några viktiga steg i utformningen av PCB-kort

Hur man förstår några viktiga steg i utformningen av PCB-kort

If you are interested in designing a PCB board, there are a number of important steps that you must know. These steps include Ideation, Definition, Validation, and Placement of components. Understanding these steps will help you make the best design possible.

Ideation

Creating an effective PCB board design starts with defining the purpose of the device. It is essential to match the board’s dimensions and height constraints with the intended components. Other considerations include the components’ ESR at high frequencies and temperature stability. In addition, it is necessary to choose the proper trace width and spacing. Failure to adhere to this general rule can lead to an explosion of costs.

The PCB design process begins with ideation, definition, and validation. This step is critical and occurs before designing a prototype or executing a design. It highlights the designer’s creativity and makes sure that all hardware components are aligned and congruent. It also enables cross-collaboration among the various team members, resulting in synergy.

Definition

The design of a PCB is a complex process. It includes choosing the right materials for the PCB base, selecting a design rule, and selecting the final dimensions. The PCB must also be tested to ensure that it will function properly under the intended operating conditions. If the design is not done correctly, the project could end in failure.

The first step in PCB design is to create a set of blueprints. This is done through computer software. The blueprints serve as a model for the design. The designer can also use a trace width calculator to determine the inner and outer layers. The conductive copper traces and circuits are marked in black ink. The traces are known as layers in the PCB design. There are two types of layers, the outer and the inner.

Validation

PCB boards go through validation processes to ensure they are designed correctly. These tests are performed by examining the board’s structures. These structures include probes and connectors, as well as the Beatty standard for material parameters. These tests are performed in order to eliminate any design errors, such as reflections.

The PCB boards are then prepared for manufacturing. The process depends on the CAD tool used and the manufacturing facility. It usually involves the generation of Gerber files, which are drawings of each layer. There are several Gerber viewer and verification tools available, some of which are built into CAD tools, while others are standalone applications. One example is ViewMate, which is free to download and use.

The validation process also involves testing the device. The design is tested with a prototype to ensure it meets the expected response. In addition, it includes an analysis of the circuit to determine if the design is stable. The results of this test determine if any changes are required. Some modifications should be made in order to improve the design and ensure that it meets the specifications of the customer.

Placement of components

Placement of components on PCB boards can be done in many ways. You can place them above or below another component, or you can use a combination of these methods. Placements can be made tidy by aligning components by choosing Align Top or Align Bottom. You can also evenly distribute components on the board by selecting components and right-clicking on them. You can also move components to the top or bottom side of the PCB by pressing L.

When designing PCBs, placement of components is crucial. Ideally, components are placed on the top side of the board. However, if the component has a low thermal dissipation, then it can be placed on the bottom side. It is also recommended to group similar components together and place them in an even row. Moreover, you should also place decoupling capacitors in close proximity to active components. In addition, you should place connectors according to the design requirements.

Dielectric breakdown voltage

Whether you’re designing your own PCB or sourcing a PCB from a manufacturer, there are several steps that you should know about. Some of these steps include: testing the PCB’s electrical components and layout for functionality. This is done by running it through a battery of tests in accordance with IPC-9252 standards. Two of the most common tests are isolation and circuit continuity tests. These tests check whether there are any disconnections or shorts in the board.

After the design process is complete, it’s important to consider the thermal expansion and thermal resistance of the components. These two areas are important because the thermal expansion of the board components increases when it gets hotter. The Tg of a board’s components must be high enough to prevent the components from being damaged or deformed. If Tg is too low, it can cause the components to fail prematurely.

Åtgärder mot störningar vid konstruktion av PCB-kretskort

Åtgärder mot störningar vid konstruktion av PCB-kretskort

Om du letar efter åtgärder mot störningar i PCB-kretskortsdesign har du kommit till rätt ställe. Dessa åtgärder omfattar skärmning, jordning, överföringsledningar och lågpassfilter. Dessa åtgärder kan hjälpa till att förhindra EMI och buller, samt förbättra prestandan hos dina elektroniska produkter.

Skärmning

Avskärmning är en viktig del av designprocessen för PCB-kretskort. Den förhindrar att EMI, eller elektromagnetiska störningar, påverkar kretskortet. EMI orsakas av elektriska signaler, som ofta har högre frekvens än kretskortet självt. Metallskärmar eller burkar på kretskortet hjälper till att blockera denna typ av störningar. Avskärmning är en viktig aspekt av mönsterkortsdesign, oavsett om kortet är avsett för analoga eller digitala kretsar.

Vanligtvis består skärmningsmaterialet av flera kopparskikt. Dessa kopparskikt är anslutna till varandra med sömmade vior, och det skärmande skiktet är inklämt mellan dem. Ett massivt kopparlager ger högre avskärmning, medan korsade kopparlager ger avskärmning utan att kompromissa med flexibiliteten.

Skärmande material är ofta tillverkade av koppar eller tenn. Dessa metaller är användbara för att skärma av kretsar, eftersom de isolerar dem från resten av kortet. Skärmning kan också ändra tjockleken på en flexibel krets. Som ett resultat kan det sänka böjkapaciteten. Avskärmningsmaterial bör väljas med omsorg, eftersom det finns vissa gränser för hur flexibelt ett kretskort kan vara.

Jordning

Jordning i PCB-kretskortsdesign är viktigt för att upprätthålla signalintegritet och minimera EMI. Ett referensjordplan ger en ren returväg för signaler och skyddar höghastighetskretsar från EMI. Korrekt PCB-jordning kan också hjälpa till med strömkretsar. Det finns dock flera faktorer att tänka på vid PCB-kretsdesign innan du börjar.

Isolera först analoga jordpunkter från strömförsörjningsplanet. Detta kan förhindra spänningsspikar på effektplanet. Fördela dessutom avkopplingskondensatorer över hela kortet. För digitala komponenter bör du använda en avkopplingskondensator med samma värde som effektplanet. För det andra, undvik att fördela jordplanet på mer än ett lager, vilket kommer att öka loopområdet.

Jordplan får inte placeras för nära de elektroniska komponenterna. Elektromagnetisk induktion (EMI) gör att signaler kopplas om två spår placeras för nära varandra. Detta fenomen kallas för överhörning. Jordplan är konstruerade för att minimera överhörning och minska EMI.

Kraftledningar

Transmissionsledningar är viktiga vid design av PCB-kretskort eftersom de kan påverka kortets funktionalitet. En transmissionslednings egenskaper inkluderar karakteristisk impedans och fördröjning. Om dessa parametrar inte kontrolleras kan de orsaka signalreflexer och elektromagnetiskt brus. Detta försämrar signalkvaliteten och kan äventyra kretskortets integritet.

Transmissionsledningar kan ha olika former, t.ex. striplines och koplanära vågledare. Varje typ av transmissionsledning har en karakteristisk impedans, som bestäms av bredden och tjockleken på den ledande remsan. Till skillnad från andra typer av transmissionsledningar kräver striplines inte ett enda jordplan, eftersom den ledande remsan kan vara inbäddad mellan två olika lager.

En annan typ av transmissionsledning är mikrostrips, som vanligtvis används på det yttersta lagret av ett PCB-kretskort. Dessa typer av spår har hög karakteristisk impedans, som varierar med frekvensen. Denna skillnad i impedans leder till reflektion av signalen, som färdas i motsatt riktning. För att undvika denna effekt måste impedansen vara lika med källans utgångsimpedans.

Lågpassfilter

Lågpassfilter används för att filtrera signaler, t.ex. radiovågor, vid låga frekvenser. Genom att använda kondensatorer som lågpassfilter i en PCB-kretskortsdesign kan man förbättra en krets prestanda. Det är dock inte alltid möjligt att använda Rogers 4003-kretskortsmaterial, och det är inte alltid tillgängligt på marknaden.

Ferriter används ofta som lågpassfilter, men detta material är känsligt för mättnad när det utsätts för likström. Därför är det inte alltid möjligt att använda det som lågpasselement om kretsens impedans är högre än ferritens impedans.