Empat Aturan Pengaturan Lebar dan Jarak Sirkuit

Empat Aturan Pengaturan Lebar dan Jarak Sirkuit

Ada empat aturan dasar untuk mengatur lebar dan jarak sirkuit. Ini termasuk aturan x/y, aturan 2/2, aturan sudut jejak 90 derajat, dan aturan penumpukan PCB. Mengetahui aturan-aturan ini akan membuat desain Anda jauh lebih mudah untuk dikerjakan. Menggunakan panduan ini akan membantu Anda mendesain PCB dengan lebar dan jarak sirkuit yang tepat.

Aturan x/y

Ketika mendesain papan sirkuit, penting untuk mempertimbangkan aturan x/y untuk mengatur lebar dan jarak sirkuit. Ini adalah aturan yang menentukan lebar antara dua sirkuit pada papan. Sebagai contoh, aturan x/y sebesar 12/12 berarti bahwa lebar dan jarak sirkuit lokal harus lebih kecil dari luasnya. Sebaliknya, aturan x/y 10/10 berarti lebar sirkuit lokal harus lebih besar dari area sekitarnya.

Aturan 2/2

Aturan dua bagian untuk mengatur lebar dan jarak sirkuit mengacu pada ukuran ruang di antara sirkuit. Ini juga dikenal sebagai aturan area. Dalam kebanyakan kasus, lebar dan jarak diatur ke nilai yang sama. Namun, aturan ini tidak efektif jika jaraknya terlalu sempit. Dalam kasus seperti itu, kemungkinan terjadinya short menjadi dua kali lipat.

Lebar dan jarak jejak pada papan sirkuit tercetak sangat penting untuk proses desain. Meskipun sebagian besar perutean digital bergantung pada nilai default, papan sirkuit yang lebih kompleks mungkin memiliki lebar jalur yang perlu dihitung secara tepat berdasarkan penumpukan lapisan. Jejak berkecepatan tinggi dengan impedansi sensitif mungkin memerlukan jarak yang lebih lebar untuk mencegah masalah integritas sinyal.

Aturan sudut jejak 90 derajat

Secara tradisional, industri desain PCB telah menghindari sudut 90 derajat. Alat tata letak PCB modern dilengkapi dengan kemampuan mitering, yang secara otomatis akan mengganti sudut 90 derajat dengan dua sudut 45 derajat. Namun, jika Anda memang perlu membuat tata letak dengan sudut 90 derajat, yang terbaik adalah menghindarinya, karena dapat menyebabkan loop seperti antena yang dapat menambah induktansi. Meskipun mengurangi sudut hingga 135 derajat dapat membantu dalam kasus ini, ini bukanlah solusi yang baik.

Aturan sudut jejak 90 derajat apabila menetapkan jarak dan lebar sirkuit, harus diterapkan secara hati-hati. Hal ini karena sudut tersebut menciptakan diskontinuitas yang dapat mengakibatkan pantulan dan pancaran. Sudut 90 derajat juga paling rentan terhadap pantulan yang bergeser fasa. Oleh karena itu, sebaiknya hindari menggunakan sudut dengan sudut 90 derajat, kecuali jika Anda berencana menempatkannya di area yang sangat sempit.

Alasan lain untuk menghindari sudut adalah karena sudut yang tajam akan menghabiskan lebih banyak ruang. Sudut yang tajam juga lebih rapuh dan akan menyebabkan diskontinuitas impedansi. Masalah-masalah ini akan mengurangi ketepatan sinyal. Oleh karena itu, perangkat lunak tata letak PCB modern lebih cenderung merekomendasikan jalur sudut kanan dan tidak memerlukan perutean sudut 45 derajat.

Aturan penumpukan PCB

Aturan penumpukan PCB untuk lebar dan jarak sirkuit adalah panduan penting ketika mendesain papan multilayer. Pada dasarnya, ini berarti bahwa jika Anda ingin memastikan bahwa sinyal seimbang dan berjalan dari satu sudut ke sudut lainnya, Anda perlu mengatur lebar dan jarak sirkuit yang sesuai. Sering kali, lebar dan jarak dihitung dengan mempertimbangkan impedansi sirkuit.

Penumpukan yang baik memungkinkan Anda mendistribusikan energi secara merata, menghilangkan interferensi elektromagnetik, dan mendukung sinyal kecepatan tinggi. Selain itu, hal ini juga mengurangi EMI dan memastikan bahwa produk Anda dapat diandalkan. Namun demikian, ada beberapa tantangan dalam mengelola stackup yang baik. Untuk mengatasi masalah ini, Anda perlu menggunakan bahan yang tepat dan mengatur lebar dan jarak sirkuit dengan benar. Perangkat lunak penumpukan PCB yang baik membantu Anda dengan tugas-tugas ini. Ini juga akan membantu Anda memilih bahan yang tepat untuk desain multilayer Anda.

Seiring dengan bertambahnya jumlah lapisan, begitu juga dengan persyaratan untuk penumpukan PCB. Sebagai contoh, penumpukan yang paling sederhana biasanya terdiri dari PCB empat lapis, sedangkan penumpukan yang lebih rumit memerlukan laminasi berurutan secara profesional. Jumlah lapisan yang lebih tinggi juga memungkinkan desainer memiliki lebih banyak fleksibilitas dalam tata letak sirkuit.

Apa Peran Papan Salinan PCB?

Apa Peran Papan Salinan PCB?

PCB copy board

PCB copy board is one of the modern products that help manufacturers in manufacturing integrated circuits. It is an electronic device that utilizes reverse research and development (R&D) technology to restore a PCB board from a scanned copy. This process allows manufacturers to optimize the design of their PCB board and add new features to their products. It has the potential to give companies the edge in the market.

The process of PCB copy board is very precise and involves several vital steps. It is essential to choose a PCB clone service with a proven record of success. The PCB copy board role is vital in today’s electronic industry, as the industry is changing and innovations are commonplace. As a result, electronic producers are always looking for ways to improve their PCB designs.

Regardless of how complex a circuit board is, it has to follow certain standards and have a clear definition of the circuit design. In other words, it must define how all the copper points are connected to each other. A poorly defined network will cause a short circuit.

PCB clone service

A PCB clone service can save you time and money by printing circuit boards from an existing design. It eliminates the need to design circuit boards from scratch and can deliver the same performance as the original board. Additionally, PCB clones save space because they use less wires and have a high shelf life.

PCBs are an integral part of most electronic devices and play a pivotal role in the electronics industry. The recent development of electronics has led to an increased demand for PCB fabrication. However, traditional methods of R&D cannot keep up with this continuous demand. With this in mind, reverse engineering is becoming more popular. Using a PCB clone service can significantly extend the life of a device or system. A PCB clone can also be modified to meet the specific needs of the user.

PCB cloning allows manufacturers to produce a large number of boards from one original design. This can cut labor costs and allow for more flexible production. It can also make it possible to replace faulty components. With PCB cloning, you can take advantage of automated production processes and ensure the highest quality boards possible.

PCB clone technology

PCB clone technology allows producers to duplicate circuit boards quickly. It takes the information on a circuit board and creates a duplicate of the original design. This can help companies streamline their manufacturing processes and improve product quality. In addition to making PCB boards cheaper, the technology also allows for greater automation.

By reusing an existing PCB, engineers can create a new product without incurring design or production costs. They can also use the same PCB design for different products, which is a major plus when it comes to cost. Because they don’t have to worry about the design, PCB clone technology streamlines the production process and reduces labor costs.

PCB cloning is an increasingly popular method for making copies of electronic circuit boards. It can be done with little or no supervision and requires no new technology. It’s a cost-effective alternative for manufacturers who need to get their products in the market quickly.

PCB copy board manufacturers

Copy-exact manufacturing refers to the implementation of reproducible activities and procedures in the PCBA manufacturing process. This allows for a smooth transition from design validation to production validation. It also ensures that all process aspects are documented. This consistency is a critical component for successful scaling and switching between different CMs.

PCB copy board manufacturers need to understand the market and develop new products to compete in the high-tech electronics market. They need to identify the market entry points and improve the functionality of their products to achieve sustainability. Innovation and sustainability go hand in hand, and innovative thinking can lead to success. As the most important footnote of the modern high-tech electronic products, the PCB copy board manufacturers are aiming to create more innovative and efficient products.

The process of PCB copying is very complex and involves extreme care. It requires precise steps and careful attention to ensure the highest quality. Expert PCB copy board manufacturers know how to carry out this process with utmost care.

Cara Menghapus Tab Pemisah PCB

Cara Menghapus Tab Pemisah PCB

Selama perakitan PCB, tab pemisah pada papan perakitan PCB harus dilepaskan setelah komponen dirakit. Untuk melepas tab ini, Anda memiliki beberapa opsi. Opsi ini termasuk menggunakan depanelizer Penggilingan, depanelizer potongan V, atau pelepasan manual.

Gigitan tikus

Untuk mempermudah proses pelepasan, tab pemisah pada PCB diposisikan sedemikian rupa sehingga tidak menyentuh komponen yang berdekatan. Jarak antara tab dan komponen yang berdekatan harus sekitar setengah inci. Anda juga perlu memisahkan kedua sisi tab pemisah agar tidak saling merusak. Jika tab pemisah tidak ditempatkan di lokasi yang tepat, hal ini dapat menyebabkan papan tidak dapat dibaca, dan hal ini dapat menyebabkan kerusakan pada komponen lain.

Alat pelepas tab pelepas PCBA terdiri dari alas penggeser dan pelat dasar pemasangan. Penggeser yang dapat digerakkan dikendalikan oleh tombol penyesuaian. Hal ini memungkinkan perangkat bergerak di sepanjang jalur yang telah ditetapkan dan melepaskan PCBA. Papan PCBA kemudian dipegang dengan dua tangan. Tenaga yang lembut diterapkan untuk melepaskan tab pelepas PCBA.

Penghapusan manual

Melepas tab breakaway PCBA secara manual lebih mudah daripada yang Anda bayangkan, tetapi prosesnya bukannya tanpa risiko. Hal ini dapat merusak komponen dan memberikan tekanan yang tidak perlu pada PCB. Selain itu, metode ini membutuhkan kehati-hatian yang tinggi, karena lubang pelepas terletak di tepi papan. Menggunakan perangkat khusus untuk mematahkan tab dapat membantu mencegah kerusakan.

Pelepasan tab breakaway PCBA secara manual dapat dilakukan dengan beberapa metode, termasuk penggunaan penggilingan atau depanelizer alur-V. Menggunakan jenis alat ini akan menghilangkan limbah dan menjamin kualitas, serta akan membantu Anda mengurangi sisa. Namun demikian, Anda harus memprogram mesin untuk tugas ini.

Bagaimana Insinyur Dapat Menghindari Arus Masuk Selama Desain PCB?

Bagaimana Insinyur Dapat Menghindari Arus Masuk Selama Desain PCB?

Inflows are a problem in pcb design and must be avoided. There are several ways to do this, including Solid ground planes, keepouts, Shift-left verification, and component keepouts. These practices will help engineers avoid inflows, and will make a PCB layout easier to manufacture.

Component keepouts

Keepouts are a great way to control the placement of objects on a PCB design. They can be overlaid or assigned to any signal layer, and they can reject specific objects. They’re particularly useful for tightening control of things like Polygon Pours and Via Stitching.

Keepouts are zones of the board where a small part or mechanical shape is too close to a track or trace. These areas should be noted on the schematic. Keepouts can be used to prevent overlapping of vias, power planes, or other noise-prone areas.

Identifying component keepouts is easy if you understand the basics of component placement. Look for identifiers on each pin, and make sure they match with the component. You can also check the dimensions of the pads and pad pitches to identify whether they’re the correct component.

A PCB design software allows you to set keepout zones for components. This can be accomplished with the use of templates or manually. Typically, keepout zones are drawn over the board surface to ensure that they aren’t obstructed.

Solid ground plane

A solid ground plane is an important feature when designing a printed circuit board. Adding a ground plane to your board is a relatively simple and inexpensive process that can significantly improve your PCB design. This important piece of circuitry is used to provide a solid foundation for all of the materials that will be installed on the board. Without a ground plane, your board is prone to electrical noise and problems.

Another benefit of a ground plane is that it can help prevent electromagnetic interference (EMI) from infiltrating your design. This electromagnetic interference can be generated by your device or from nearby electronics. By choosing a ground plane that is located near the signal layer, you can minimize EMI in the final design.

Solid ground planes are particularly important for circuit boards that have multiple layers. Because of the complexities of a PCB design, the ground plane must be properly designed to prevent errors and ensure a reliable connection between multiple layers. Moreover, the ground plane should be large enough to accommodate the components that will be used on it.

Shift-left verification

Shift-left verification during PCB designs is an efficient design process that eliminates the need for extensive full-board verification and lets designers focus on critical second-order issues. Unlike traditional design flow, where the PCB specialist is a last resort, shift-left verification can be performed by design authors. This way, designers can make design improvements before the specialists even see the boards.

Shift-left verification can help designers identify potential issues that can lead to costly revisions. For example, improper diode orientation, missing pull-up resistors, and capacitor voltage derating can be discovered during verification. These issues may not be detectable until physical testing, which often results in re-spins and tooling changes. Using automated verification during the layout phase can dramatically increase the likelihood of a successful first pass.

PCBs often contain subtle errors that can escape expert notice during manual peer review. Modern automated verification approaches can catch these errors at the schematic level. This means that design engineers can focus on higher-level problems while reducing costly revisions and redesigns. As a result, these tools have significant advantages for both design engineers and engineering project managers.

Standard practices

There are certain fundamental PCB design principles that every designer should adhere to. For example, it is essential to place components far enough apart to provide signal and power integrity, but close enough to provide adequate routing channels. Additionally, certain routings such as impedance-controlled traces, differential pairs, and sensitive signals have specific spacing requirements. When placing components, it is also important to consider design for manufacture (DFM) requirements.

When designing a PCB, it is important to consider the cost of production. Using buried or blind vias may result in increased production costs. Therefore, PCB designers should plan their designs and usage of vias ahead of time. Moreover, they should consider the size of the components in order to minimize production costs.

Another important element of PCB development is design review. Peer reviews help designers avoid common design errors. Periodic reviews ensure that the PCB layout, circuits, and functionality are accurate. Peer reviews will also identify mistakes that the designer may have overlooked.

Common Mistakes in PCB Schematic Design

Common Mistakes in PCB Schematic Design

Avoiding slivers

Slivers are small pieces of copper or solder mask that can be very harmful to the PCB’s functionality. They can lead to short circuits and can even cause corrosion of copper. This reduces the life of the circuit board. Luckily, there are a few ways to avoid them. The first is to design PCBs with minimum section widths. This will ensure that a manufacturer will be able to detect potential slivers with a DFM check.

Another way to avoid slivers is to design the PCB so that it is as deep and narrow as possible. This will reduce the chances of slivers during the fabrication process. If slivers are not detected during DFM, they will cause a failure and require scrap or rework. Designing PCBs with a minimum width will help avoid this problem and ensure the PCB is as accurate as possible.

Avoiding faulty thermals

Using the correct thermals is an important step in the PCB schematic design process. Faulty thermals can damage the PCB and cause excessive heat reflow. This can compromise the overall PCB performance, which is not what you want. Poor thermals also decrease the PCB’s durability.

During the design process, thermals can be easily overlooked. This is especially true for PCBs with ultra-small flip-chip packages. A faulty thermal pad could damage the circuit or compromise the signal integrity. To avoid this problem, the schematic design process should be as straightforward as possible.

Thermals are important to the proper operation of any circuit. Faulty thermals can cause problems during the manufacturing process. It is imperative that the design team have the right tools and personnel to detect and rectify any errors in the design. Electromagnetic interference and compatibility issues are also concerns.

Impedance mismatch

Impedance mismatch is an important factor to consider when designing a PCB. The impedance of a trace is determined by its length, width, and copper thickness. These factors are controlled by the designer, and can lead to significant changes in voltage as the signal propagates along the trace. This, in turn, can affect the integrity of the signal.

A good impedance match is necessary for maximum signal power transfer. When tracing high-frequency signals, the impedance of the trace can vary depending on the geometry of the PCB. This can result in significant signal degradation, especially when the signal is being transferred at high frequencies.

Placement of op amp units

The placement of op amp units on a PCB schematic is often an arbitrary task. For example, one might place unit A on the input, and unit D on the output. However, this is not always the best approach. In some cases, the wrong placement can lead to a circuit board that doesn’t function properly. In such cases, the PCB designer should re-define the functions of op amp chips.

Impedance mismatch between transceiver and antenna

When designing a radio transmitter or receiver, it’s important to match the impedance of the antenna and transceiver to ensure maximum signal power transfer. Failure to do so can cause signal loss along the feedline of the antenna. Impedance is not the same as PCB trace resistance, and a design that doesn’t match will result in low signal quality.

Depending on the frequency of the signal, a board with no impedance matching between the antenna and transceiver will exhibit reflections. This reflection will send some of the energy toward the driver, but the remaining energy will continue on. This is a serious signal integrity problem, especially in high-speed designs. Therefore, designers must pay close attention to impedance mismatches on the PCB schematic. In addition to affecting signal integrity, unmatched impedances can cause electromagnetic interference and localized radiation. These signals can affect sensitive components in the PCB.

Saran Untuk Desain Tata Letak PCB Dari Sudut Solder

Saran Untuk Desain Tata Letak PCB Dari Sudut Solder

When designing a circuit board, there are several things to keep in mind, including the soldering angle. In general, you should avoid soldering with your face directly above the joint. To avoid this, try to place the power and ground planes on the inner layers of the board and align components in a symmetrical manner. In addition, avoid forming 90-degree trace angles.

Place power and ground planes in the inner layers of the board

When designing a circuit board, it is important to place power and ground planes in the inner layers. This helps minimize the amount of EMI, which can result from the proximity of high-speed signals to a ground plane. Ground planes are also necessary for reducing the amount of volt drop on a power rail. By placing power and ground planes in the inner layers, you can make room on the signal layers.

Once you’ve made sure that the power and ground planes are in the inner layers, you can move onto the next step of the process. In the Layer Stack Manager, add a new plane and assign a network label to it. After the network label is assigned, double-click on the layer. Be sure to consider the distribution of components, such as I/O ports. You also want to keep the GND layer intact.

Avoid soldering with your face directly above the joint

Soldering with your face directly above the joint is a bad practice because the solder will lose heat to the ground plane and you’ll end up with a brittle joint. It can also cause a lot of problems, including excessive buildup on the pin. To avoid this, make sure that the pins and pads are both evenly heated.

The best way to avoid soldering with your face directly above a joint is to use flux. This helps transfer heat, and it also cleans the metal surface. Using flux also makes the solder joint smoother.

Place components with the same orientation

When laying out a PCB layout, it’s important to place components with the same orientation from the soldering angle. This will ensure proper routing and an error-free soldering process. It also helps to place surface mount devices on the same side of the board, and through-hole components on the top side.

The first step in laying out a layout is to locate all the components. Typically, components are placed outside the square outline, but this does not mean that they cannot be placed inside. Next, move each piece into the square outline. This step helps you understand how components are connected.

Avoid creating 90-degree trace angles

When designing a PCB layout, it is important to avoid creating 90-degree trace angles. These angles result in narrower trace width and increased risks of shorting. If possible, try to use 45-degree angles instead. These are also easier to etch and can save you time.

Creating 45-degree angle traces on your PCB layout will not only look better, but it will also make the life of your PCB manufacturer easier. It also makes copper etching easier.

Using 45-degree angles for etching

Using 45-degree angles for solder in PCB layout design is not a common practice. In fact, it’s a bit of a relic from the past. Historically, circuit boards have had right-angled corners and a lack of any solder mask. This is because early circuit boards were made without solder masks, and the process involved a process called photosensitization.

The problem with using angles larger than 90 degrees is that they tend to lead to copper migration and acid traps. Likewise, traces drawn on a layout at a right angle do not get as much etching. In addition, 90-degree angles can create partially traced angles, which can result in shorts. Using 45-degree angles is not only easier but safer, and will result in a cleaner and more accurate layout.

Choosing the appropriate package size

When planning a PCB layout, you must pay attention to the soldering angle and package size of the components on the board. This will help you minimize shadow effect problems. Typically, solder pads must be spaced at least 1.0mm apart. Also, be sure that through-hole components are placed on the top layer of the board.

The orientation of the components is another important factor. If the components are heavy, they should not be placed in the center of the PCB. This will reduce board deformation during the soldering process. Place smaller devices near the edges, while larger ones should be placed on the top or bottom side of the PCB. For example, polarized components should be aligned with positive and negative poles on one side. Also, be sure to place taller components next to smaller ones.

Tiga Tips Untuk Mengurangi Risiko Desain PCB

Tiga Tips Untuk Mengurangi Risiko Desain PCB

Ada banyak cara untuk mengurangi risiko yang terkait dengan desain PCB. Beberapa di antaranya adalah mengarahkan semua komponen ke arah yang sama dan menggunakan beberapa vias pada transisi lapisan. Cara lainnya termasuk memisahkan sirkuit analog dan digital dan menjauhkan sirkuit osilasi dari panas.

Mengarahkan komponen ke arah yang sama

Risiko desain PCB diminimalkan dengan mengarahkan komponen ke arah yang sama. Praktik ini membantu meminimalkan waktu perakitan dan penanganan, serta mengurangi pengerjaan ulang dan biaya. Mengorientasikan komponen ke arah yang sama juga membantu mengurangi kemungkinan komponen diputar 180 derajat selama pengujian atau perakitan.

Orientasi komponen dimulai dengan konstruksi footprint. Jejak yang tidak benar dapat menyebabkan komponen yang salah terhubung. Sebagai contoh, jika dioda diorientasikan dengan katoda mengarah ke satu arah, katoda dapat dihubungkan ke pin yang salah. Selain itu, komponen dengan banyak pin dapat dipasang dengan orientasi yang salah. Hal ini dapat menyebabkan komponen mengambang di atas bantalan atau berdiri, yang menyebabkan efek tombstoning.

Pada papan sirkuit yang lebih tua, sebagian besar komponen diorientasikan ke satu arah. Namun, papan sirkuit modern harus memperhitungkan sinyal yang bergerak pada kecepatan tinggi dan tunduk pada masalah integritas daya. Selain itu, pertimbangan termal harus ditangani. Akibatnya, tim tata letak harus menyeimbangkan kinerja listrik dan kemampuan manufaktur.

Menggunakan beberapa vias pada transisi lapisan

Meskipun tidak mungkin menghilangkan vias pada transisi lapisan sepenuhnya, namun dimungkinkan untuk meminimalkan radiasi dari vias dengan menggunakan vias jahitan. Vias ini harus dekat dengan vias sinyal untuk meminimalkan jarak perjalanan sinyal. Penting untuk menghindari penggabungan pada vias ini, karena hal ini akan mengorbankan integritas sinyal sewaktu dalam perjalanan.

Cara lain untuk mengurangi risiko desain PCB adalah dengan menggunakan beberapa vias pada transisi lapisan. Hal ini mengurangi jumlah pin pada PCB dan meningkatkan kekuatan mekanis. Ini juga membantu mengurangi kapasitansi parasit, yang sangat penting ketika berurusan dengan frekuensi tinggi. Selain itu, menggunakan beberapa vias pada transisi lapisan juga memungkinkan Anda untuk menggunakan pasangan diferensial dan komponen dengan jumlah pin yang tinggi. Namun, penting untuk menjaga jumlah sinyal paralel tetap rendah, untuk meminimalkan penggabungan sinyal, crosstalk, dan noise. Juga disarankan untuk merutekan sinyal noise secara terpisah pada lapisan yang terpisah untuk mengurangi penggabungan sinyal.

Menjauhkan panas dari sirkuit osilasi

Salah satu hal terpenting yang perlu diingat ketika mendesain PCB adalah menjaga suhu serendah mungkin. Untuk mencapai hal ini, diperlukan pengaturan geometris komponen yang cermat. Juga penting untuk mengarahkan jalur arus tinggi dari komponen yang sensitif secara termal. Ketebalan jejak tembaga juga berperan dalam desain termal PCB. Ketebalan jejak tembaga harus menyediakan jalur impedansi rendah untuk arus, karena resistansi tinggi dapat menyebabkan kehilangan daya dan panas yang signifikan.

Menjauhkan panas dari sirkuit osilasi adalah bagian penting dari proses desain PCB. Untuk kinerja optimal, komponen osilator harus ditempatkan di dekat bagian tengah papan, bukan di dekat tepinya. Komponen di dekat tepi papan cenderung menumpuk banyak panas, dan ini dapat meningkatkan suhu lokal. Untuk mengurangi risiko ini, komponen berdaya tinggi harus ditempatkan di tengah PCB. Selain itu, jejak arus tinggi harus dialihkan dari komponen sensitif, karena dapat menyebabkan panas terakumulasi.

Menghindari pelepasan muatan listrik statis

Menghindari pelepasan muatan listrik statis saat mendesain PCB adalah aspek penting dalam teknik elektronik. Pelepasan muatan listrik statis dapat merusak chip semikonduktor presisi di dalam sirkuit Anda. Hal ini juga dapat melelehkan kabel pengikat dan sambungan PN hubung singkat. Untungnya, ada banyak metode teknis untuk menghindari masalah ini, termasuk tata letak dan pelapisan yang tepat. Sebagian besar metode ini dapat dilakukan dengan sedikit modifikasi pada desain Anda.

Pertama, Anda harus memahami cara kerja ESD. Singkatnya, ESD menyebabkan sejumlah besar arus mengalir. Arus ini mengalir ke tanah melalui sasis logam perangkat. Pada beberapa kasus, arus dapat mengikuti beberapa jalur ke tanah.

Penyebab dan Solusi Penyolderan Semu PCBA

Penyebab dan Solusi Penyolderan Semu PCBA

Penyolderan semu PCBA adalah masalah yang memengaruhi kualitas PCBA yang sudah jadi. Hal ini dapat menyebabkan kerugian karena pengerjaan ulang, yang mengurangi efisiensi produksi. Namun, mendeteksi dan menyelesaikan masalah penyolderan semu dapat dilakukan dengan menggunakan inspeksi.

Reflow soldering

Reflow soldering is one of the most common methods of PCB assembly. This method is often combined with wave soldering. It can greatly affect the quality of the assembled board, which is why the process requires a proper understanding of PCB construction.

To ensure a quality solder joint, it is important to follow several guidelines. First, it is important to check the alignment of the printed board. Make sure that the print is properly aligned before applying the solder paste. Second, clean the stencil bottom regularly. Third, reflow soldering can result in a tombstone effect, otherwise known as the Manhattan effect. The tombstone effect is caused by force imbalances during the reflow soldering process. The end result looks like a tombstone in a cemetery. In reality, the tombstone effect is an open circuit on a defunct PCB.

During the preheat stage, a small portion of the solder paste can gasify. This can cause a small amount of solder to leave the soldering pad, especially under chip components. In addition, melted solder paste may push out under sheet-type resistor-capacitor units.

Wave soldering

PCB assembly process defects, including tombstoning, occur in a variety of ways. One of the main causes is inadequate soldering quality. Poor soldering results in cracks that appear on the surface of discrete components. These defects can be easily corrected with rework, although they can create a wide range of problems in the assembly process.

PCB manufacturers need to be aware of these defects to prevent them from occurring in the production process. These defects may be hard to detect, but different technologies and methods can help detect them and minimize their impact. These methods allow manufacturers to prevent soldering defects before they occur and help them produce high-quality products.

Stencil thickness

PCB pseudo-soldering can be caused by a number of factors. For example, an incorrect stencil can lead to over-applied solder paste on the components. Moreover, a poorly shaped stencil can result in solder balling or discrete deformities. These issues can be resolved by reducing the thickness of the stencil or the aperture size. However, these steps should be done with caution because even the slightest undersizing can lead to major problems in later PCB assembly stages.

PCB pseudo-soldering can be prevented by properly applying flux. Flux is a thixotropic agent that makes solder paste have pseudo-plastic flow characteristics. This means that it will reduce in viscosity when passing through the stencil’s apertures, but will recover once the external force is removed. The amount of flux used in solder paste should be eight to fifteen percent. Lower values will result in a thin solder film, while higher ones will cause excessive deposits.

Squeegee pressure

PCBA pseudo soldering, also known as cold soldering, is an in-between stage of the soldering process in which a portion of the board is not fully soldered. This can compromise the quality of the PCB board and affect its circuit characteristics. This defect may result in the scrapping or disqualification of the PCB board.

To control the squeegee pressure can solve the problem of pseudo soldering. Too much pressure will smear the solder paste and cause it to spread across the PCB’s flat surface. Alternatively, too little pressure will cause the solder paste to scoop up into larger apertures, causing the PCB to be covered with too much paste.

Penelitian tentang Mekanisme Steker PCB dan Metode Kontrol yang Efektif

Penelitian tentang Mekanisme Steker PCB dan Metode Kontrol yang Efektif

Ruang mikro bertekanan

Ruang mikro bertekanan adalah cara yang efektif untuk mengangkut cairan dalam perangkat lab-on-PCB. Alat ini bekerja dengan menyimpan energi pneumatik dan melepaskannya melalui bukaan pada katup mikro. Katup mikro diaktifkan secara elektrik, menggunakan kawat emas berdiameter sekitar 25 m.

Perangkat Lab-on-PCB saat ini sedang dikembangkan untuk berbagai aplikasi biomedis, tetapi belum tersedia secara komersial. Namun, penelitian di bidang ini berkembang pesat dan ada potensi yang signifikan untuk mendapatkan perangkat yang dapat dipasarkan. Berbagai metode penggerak aliran telah dikembangkan, termasuk electrowetting pada dielektrik, penggerak aliran elektroosmotik, dan penggerak aliran berbasis perubahan fase.

Penggunaan sumber eksternal untuk memindahkan cairan di dalam sistem lab-on-PCB telah lama digunakan dalam penelitian, tetapi ini bukan solusi yang praktis untuk sistem portabel. Pompa jarum suntik eksternal juga mengurangi portabilitas perangkat. Namun, mereka memberikan kesempatan yang menarik untuk mengintegrasikan sensor dan aktuator dalam perangkat mikrofluida.

Pompa elektroosmotik juga biasanya diintegrasikan pada PCB untuk manipulasi cairan. Pompa ini menawarkan aliran fluida kontinu berbiaya rendah dan bebas pulsa, tetapi membutuhkan saluran mikro yang sempit dan reservoir cairan eksternal. Aktivasi yang tidak tepat dapat menyebabkan elektrolisis dan pemblokiran saluran mikro. Selain itu, elektroda tembaga tidak ideal karena dapat menyebabkan kontaminasi cairan dan pemblokiran saluran mikro. Selanjutnya, elektroda tembaga memerlukan langkah fabrikasi tambahan dan meningkatkan biaya.

Laboratorium-on-PCB

Laboratory-on-PCB (LoP) adalah jenis perangkat yang mengintegrasikan sirkuit elektronik ke PCB. Jenis perangkat ini digunakan untuk melakukan berbagai eksperimen dalam sirkuit elektronik. Perangkat ini juga digunakan dalam aplikasi yang memerlukan integrasi berbagai bahan. Perangkat ini kompatibel dengan teknik flow-driving dan juga dapat diproduksi dengan metode fotolitografi atau dry resist. Selain itu, perangkat ini juga menggabungkan komponen elektronik yang dipasang di permukaan yang dirancang untuk mengukur data. Salah satu contohnya adalah perangkat yang mengintegrasikan LED biru tertanam dan sensor suhu terintegrasi.

Pilihan lain untuk memindahkan cairan di Lab-on-PCB adalah dengan menggunakan ruang mikro bertekanan. Ruang bertekanan dapat menyimpan energi pneumatik dan dapat dilepaskan dengan membuka katup mikro. Katup mikro diaktifkan secara elektrik. Salah satu keuntungan dari jenis mekanisme ini adalah sifatnya yang portabel dan dapat digunakan beberapa kali. Selain itu, dapat menahan tekanan tinggi.

Salah satu tantangan utama dalam mengimplementasikan katup mikro ke dalam PCB adalah kesulitan mengintegrasikannya ke dalam PCB. Juga sulit untuk mengintegrasikan aktuator dengan bagian yang bergerak ke dalam PCB. Namun, para peneliti telah mengembangkan pompa mikro yang berbasis PCB, dan memanfaatkan aktuator piezoelektrik.

Proses penggunaan lab-on-PCB untuk mengontrol cairan sangat kompleks dan bisa sangat sulit. Ada banyak kekurangan dari metode ini, dan kesulitan utamanya adalah proses fabrikasi yang rumit. Selain itu, metode perakitan LoP juga menambah kerumitan perangkat.

Desain dan Produsen Elektronik di Singapura

Desain dan Produsen Elektronik di Singapura

The electronics industry in Singapore is an incredibly active and growing one. In 2017, more than a quarter of the country’s GDP was attributed to the industry. With a thriving electronics industry, it is no surprise that Singapore is one of the leading electronics exporters. While the region is home to a number of reputable electronic design and manufacturing companies, choosing the right one for your project can be difficult. Below is a look at some of the things to look for when looking for an EMS company.

EMS companies specialize in designing, assembling, and testing of electronic components

EMS is the process of designing, manufacturing, and testing electronic components and products. EMS companies specialize in specific areas of the manufacturing process, such as PCB fabrication, IC prototyping, and electronic component assembly. They may use different PCB assembly technologies to ensure that the final product meets the client’s specifications. In some cases, EMS companies may design prototypes for customers to test the concept of their products before committing to mass production. These prototypes are often built using less expensive materials and can closely mimic the final product.

An EMS company will work closely with you to ensure that your product is designed and manufactured to meet your specifications. Their sales personnel will explain their capabilities and understand what your needs are, and will generate a quotation. They will also work with component suppliers to obtain the lowest cost and shortest lead times.

When selecting an EMS partner, be sure to consider the aftermarket and service needs of your product. Your EMS partner should have a dedicated team that can help you with component obsolescence and remanufacturing. The company should also offer complete lifecycle support for your products, including component obsolescence management and component engineering management services. In addition, good communication is essential for the success of a project.

They offer high-tech services

If you need help in the design and production of electronic products, Singapore is a great choice for you. The country is home to many advanced electronics companies. For instance, there are a number of semiconductor companies that are based here. Some of these companies specialize in developing intelligent and energy-efficient products.

The electronics industry in Singapore comprises more than 2900 companies that offer a range of value chain services, from product design to manufacturing to distribution. These companies specialize in areas such as integrated circuit design, satellite communication, wireless technology, encryption technology, and product production and development. With so many options, choosing the right electronic design and manufacturing company can be challenging.

A reputable Singapore electronic manufacturing company is the EMS Company. With over 40 years of experience, it serves diverse industries with innovative and quality design solutions. It is highly recognized for its expertise and emerging technology. As a result, the company is able to offer customers a wide range of electronic products and services that meet their needs.

They have a credit history

There are numerous Singapore electronic design and manufacture companies that provide services to businesses and individuals. The industry is quite large in Singapore and accounts for more than a quarter of the country’s GDP. Singapore is also a top exporter of electronic products. However, with so many options available, it can be a challenge to choose the best company to meet your needs. Here are some things you should keep in mind when choosing a Singapore electronic design and manufacture company.

A credible history is an important quality to look for in electronic design and manufacture companies. The more years these companies have been operating, the more likely they are to have the know-how and processes to deliver quality results. This helps them earn their clients’ trust and confidence. A company with decades of experience is also more likely to have refined processes, technologies, and technical know-how to ensure the success of your project.

They offer high-quality products

Electronic design companies in Singapore provide a wide range of services and products. Most of them provide value-chain services, including product development, manufacturing, and distribution. They focus on a variety of industries, including integrated circuit design, wireless technology, satellite communication, and encryption technology. Some offer a complete solution, while others are focused on niche areas. With such a broad range of offerings, choosing the right company can be a challenge.

EMS Company is one of the most prominent electronic manufacturers in Singapore, offering state-of-the-art services and products. They have been in the industry for over 40 years, serving diverse sectors. EMS Company has a focus on developing new technologies and providing innovative solutions. Their engineering team is dedicated to delivering high-quality products and incorporating emerging technologies into their designs.

When looking for the right electronic design and manufacture company, it’s important to choose a reputable company with a history of providing quality services. This will help you feel more confident that the company is trustworthy. In addition, companies that have been in business for decades are likely to have refined processes, technologies, and technical know-how. Using a reputable company will help you protect your business and financial future.