Ventajas y desventajas de los acabados superficiales de PCB

Ventajas y desventajas de los acabados superficiales de PCB

Los acabados superficiales pueden clasificarse de muchas formas distintas. En este artículo se analizan los principales atributos de los acabados superficiales de PCB y los requisitos de los distintos tipos de productos de PCB. También se analizan las ventajas e inconvenientes de cada tipo. Para determinar el acabado superficial adecuado para su proyecto de PCB, puede consultar la siguiente tabla.

ENTEC 106(r)

Uno de los acabados superficiales más utilizados en la industria de las placas de circuito impreso es el ENEPIG. Se trata de un revestimiento metálico de dos capas compuesto por 2-8 min de Au sobre 120-240 min de Ni. El níquel actúa como barrera para el cobre en la superficie de la placa de circuito impreso. El oro protege el níquel de la corrosión durante el almacenamiento y proporciona una baja resistencia de contacto. El ENIG suele ser una opción rentable para las placas de circuito impreso, pero es importante utilizar procedimientos de aplicación adecuados.

Las ventajas y desventajas del oro galvánico sobre el níquel electrolítico (ESN) son principalmente la rentabilidad y la facilidad de chapado. El oro galvánico sobre níquel electrolítico es muy duradero y tiene una larga vida útil. Sin embargo, el oro galvánico sobre níquel tiene un precio más elevado que otros acabados. Además, el oro galvánico sobre níquel interfiere con el grabado y debe manipularse con cuidado para evitar daños.

ENEPIG

Los acabados superficiales de las placas de circuito impreso se clasifican en dos grandes categorías: ENEPIG y ENIG: ENEPIG y ENIG. En este artículo se analizan las diferencias entre ambos acabados y se comparan sus ventajas e inconvenientes. También se analiza cuándo utilizar cada uno de ellos.

El acabado superficial ENIG es un acabado metálico adherido de tres capas. En el pasado, este material se utilizaba principalmente en placas de circuito impreso con conexiones superficiales funcionales y elevados requisitos de vida útil. Sin embargo, el elevado coste del paladio y el requisito de una línea de fabricación independiente provocaron el fracaso del material. En los últimos años, sin embargo, el material ha vuelto a resurgir. Sus propiedades de alta frecuencia lo convierten en una opción excelente para aplicaciones de alta frecuencia.

En comparación con ENIG, ENEPIG utiliza una capa adicional de paladio entre las capas de oro y níquel. Esto protege la capa de níquel de la oxidación y ayuda a evitar el problema de la almohadilla negra. Dado que los precios del paladio han bajado recientemente, ENEPIG está ahora ampliamente disponible. Ofrece las mismas ventajas que el ENIG, pero es más compatible con la unión por hilo. Sin embargo, el proceso es más complejo, requiere más mano de obra y puede resultar caro.

HASL

La clasificación HASL del acabado superficial de las placas de circuito impreso proporciona una excelente soldabilidad y es capaz de adaptarse a múltiples ciclos térmicos. Anteriormente, este acabado superficial era el estándar del sector, pero la introducción de las normas RoHS ha hecho que deje de cumplirlas. La alternativa al HASL es el HASL sin plomo, que es más respetuoso con el medio ambiente, más seguro y se ajusta mejor a la directiva.

El acabado superficial de las placas de circuito impreso es fundamental para su fiabilidad y compatibilidad. Un acabado superficial adecuado puede evitar que la capa de cobre se oxide, lo que disminuye la soldabilidad de la placa de circuito impreso. Sin embargo, la calidad del acabado superficial es sólo una parte de la cuestión. Hay que tener en cuenta otros aspectos, como el coste de fabricación de la placa.

Oro duro

Hay muchas clasificaciones de acabados superficiales de PCB, incluidos los acabados de oro duro y oro blando. El oro duro es una aleación de oro que incluye complejos de níquel y cobalto. Este tipo se utiliza para conectores de borde y contactos de PCB y suele tener una pureza mayor que el oro blando. El oro blando, por su parte, suele utilizarse para aplicaciones de unión de cables. También es adecuado para la soldadura sin plomo.

El oro duro suele utilizarse para componentes muy resistentes al desgaste. Es el tipo de chapado que se utiliza en los chips RAM. El oro duro también se utiliza en los conectores, pero los dedos de oro deben estar separados 150 mm. Además, no se recomienda colocar los orificios chapados demasiado cerca de los dedos de oro.

Lata de inmersión

Los acabados superficiales de PCB son un proceso crítico entre la fabricación de la placa de circuito impreso y el montaje de la tarjeta de circuito. Desempeñan un papel importante en el mantenimiento de los circuitos de cobre expuestos y proporcionan una superficie lisa para la soldadura. Normalmente, el acabado de la superficie de la PCB se encuentra en la capa más externa de la PCB, por encima del cobre. Esta capa actúa como una "capa" para el cobre, lo que garantizará una soldabilidad adecuada. Existen dos tipos de acabados superficiales para PCB: metálico y orgánico.

El estaño de inmersión es un acabado metálico que cubre el cobre de la placa de circuito impreso. Tiene la ventaja de poder retocarse fácilmente en caso de errores de soldadura. Sin embargo, tiene algunas desventajas. Por un lado, puede deslustrarse con facilidad y tiene una vida útil corta. En consecuencia, se recomienda utilizar acabados superficiales de PCB de estaño por inmersión sólo si está seguro de que sus procesos de soldadura son precisos.

Por qué los PCB flexibles necesitan rigidizadores

Por qué los PCB flexibles necesitan rigidizadores

A PCB stiffener is required to give your PCB its rigidity. There are several materials available to stiffen PCBs. Some are more expensive than others, such as FR4 or stainless steel. You need to decide which type is best for your specific needs.

Stainless steel

Flexible printed circuit boards (PCBs) are among the most popular types of PCBs on the market today. Their flexibility allows designers to design circuitry that isn’t possible with rigid circuits. However, a flexible PCB’s lack of stiffness can lead to performance and durability issues. For this reason, flexible PCBs often include stainless steel stiffeners.

A stiffener may be either thick or mass-oriented and attached to a flexible PCB on the same side as the components. If the flexible PCB is assembled with plated through-hole connections, the stiffeners may be attached to the opposite side of the connector. The stiffeners are then sealed into place with pressure-sensitive adhesives or thermal bonding.

The use of stiffeners for flexible PCBs is most commonly used for flex circuits. They help maintain a proper thickness of the flex circuit and prevent stress on the components and solder joints. This type of stiffener can be attached with thermally bonded acrylic adhesives or PSA.

Aluminum

Stiffeners are often required for flexible PCBs. They reduce the flexibility of the board and provide mechanical support for components during assembly. They also serve a role in heat dissipation. There are several types of stiffeners, and each one provides different benefits. For example, stiffeners can improve solder resistance, increase bond strength, and limit the bending ability of the board.

Generally, rigideners are attached to a PCB using pressure sensitive adhesive tape. PSA is a popular adhesive material for this purpose, which is designed to withstand high-temperature reflow cycles. The type of adhesive used depends on the length and location of the stiffeners. If the stiffeners extend beyond the flex circuit side, it is important to use PSA to attach them to the board. Additionally, PSA may not be suitable for stiffeners that are too short or too long.

Aluminum is an alternative material for stiffeners. This material has better heat-sink and rigidity than other materials. Aluminum is more expensive, but can be more durable than other materials.

Kapton

When working with flexible PCBs, it is necessary to consider stiffeners in your design. Adding a stiffener can increase solder resistance and strengthen the connections between components. It can also help with strain relief and heat dissipation. In most cases, stiffeners are bonded on the same side of the flexible PCB as the components.

FR4 and polyimide are two materials that are commonly used for stiffeners. These materials are cheap and can provide a flat surface to the flexible PCB. They also provide excellent solder resistance and can provide the required support during pick-and-place processes.

The placement of stiffeners is important because they must be installed on the same side as the components to be mounted. This also allows easy access to the solder pads. While stiffeners are important, some customers may choose to skip the stiffeners altogether and use a FR-4 frame instead of an SMT carrier.

FR4

FR4 stiffeners for flexible PCBs are an excellent way to maintain and route flexible PCBs. They work by extending a strip of FR-4 stiffener material into a flexible PCB array. This helps the flex PCB maintain its proper shape and avoid cracks in the conductor layers. In addition to providing support during assembly, these devices can also act as heat dissipation devices.

FR4 stiffeners can be made of a variety of materials, including stainless steel and aluminum. Stainless steel stiffeners are more resistant to corrosion, are more adaptable and more resistant to a wide range of temperature conditions. Stainless steel stiffeners are usually thin, ranging from 0.1 to 0.45mm.

FR4 stiffeners are added to a flexible circuit as the final fabrication step. They can be applied with either pressure sensitive or thermal-set adhesive. The choice may depend on the end-use, but pressure-sensitive stiffeners are usually less expensive than thermal-set adhesive. In addition, thermal-set adhesive requires the flex to be placed in a lamination press, which applies heat to cure the adhesive.

Important Considerations While Hiring Electronics Manufacturing Companies

Important Considerations While Hiring Electronics Manufacturing Companies

The quality of products produced by an electronics manufacturing company is a key determining factor for its success in the market. Companies that hold quality certifications are an added bonus. Moreover, it is important for a company to target a specific market for its product. In addition, the company should have the right market targeting strategy and must have quality certifications to support this claim.

Product development and production are important considerations while hiring electronics manufacturing companies

The process of developing and producing electronic products is an important part of the electronics manufacturing process. The two components work together to create products that meet client specifications. There are many types of products that are manufactured in this industry. Consumer products include the items that we use every day, while industrial products are used by industries such as aerospace and automotive. Military products are used by nations’ armed forces.

When hiring an electronics manufacturing company, there are several factors that you should keep in mind. First, you need to develop your team. The team should include employees, partners, suppliers, and vendors. The employees are in charge of producing the goods, while the partners and suppliers supply equipment and raw materials. Finally, the vendors are in charge of selling the products to the end users. Another consideration is finances. You should keep track of your expenses using accounting software, or you should hire a bookkeeper to handle the books.

Quality control is another important consideration. A quality control system helps to reduce losses and setbacks and keeps costs low. Similarly, quality control helps to ensure compliance with government regulations. In some industries, such as the automotive industry, the output of the product may directly affect the lives of consumers. Therefore, a company should never skimp on quality control just to save money.

Quality certifications are added bonuses to any quality assurance in electronics manufacturing

Although quality standards in the electronics industry have become a top concern, quality certifications are not mandatory. This means that electronic contract manufacturers, small and medium-sized businesses, and even some government agencies do not need to receive quality certifications in order to provide services. However, quality certifications are often required by defense contractors, government agencies, and the transportation industry.

Choosing an electronics manufacturing company with ISO certification will help you save time and money and increase your customer’s satisfaction. In addition, choosing a certified company will give you a peace of mind knowing that their processes are of a high standard and that they are continually improving.

Aside from improving the manufacturing process, quality certifications will help you improve your products and communicate with vendors. Consistency in quality is a vital factor for success and profitability in manufacturing. In electronics, consistency is critical. Compliance with standards and specifications will increase customer satisfaction and brand reputation.

Targeting markets is critical to success in the electronics manufacturing business

If you have an idea for an electronics manufacturing business, you need to target markets for your products. This can be accomplished in two ways: product development and production. Product development involves the design and creation of new products and production involves building products that meet client specifications. There are two main types of products to target: consumer products, which are items that we use on a daily basis, and industrial products, which are products used by industrial or military forces all over the world.

Regardless of the type of electronics manufacturing business, it’s important to understand the demographics of the target markets. Market segmentation can be done on a variety of bases, including gender, age, and income level. Demographic segmentation can give you a list of groups that are most likely to purchase your products. Psychographic segmentation, on the other hand, can help you target the most profitable market segments.

In addition to identifying the most profitable markets, you also need to understand how global markets are impacted by events such as Ebola. The Ebola outbreak will impact countries outside Germany, including the United States, China, and India. This will affect the automotive, computer, and communications sectors. It could also increase the need for remote monitoring devices that will allow businesses to continue working even during a lockdown situation.

Problems with hiring in the electronics manufacturing sector

With the skills gap in the electronics industry becoming more acute, companies must adapt to retain good employees and attract new ones. This means offering incentives such as flexible schedules, referral bonuses, and better salaries. Hiring good talent is essential to the long-term success of an organization, so employers need to look for ways to keep employees happy and engaged. A key element of successful hiring is candidate assessment, especially soft skills, which should be emphasized.

¿Cuál es la función y el principio del orificio de la vía de la placa de circuito impreso?

¿Cuál es la función y el principio del orificio de la vía de la placa de circuito impreso?

A PCB via hole is an open hole, drilled through a PCB. The wall of the hole is coated with a plating solution, which allows electrical signals to flow through the hole. When drilling a via hole, it is important to follow fabricator rules to ensure the correct diameter and aspect ratio. The minimum distance between adjacent vias must also be observed.

Through-hole vias

PCB through-hole vias are commonly used for signal transitions on circuit boards. There are various types of vias, including blind vias, buried vias, and microvias. Each type of via requires a certain procedure during placement. These vias are placed during the routing stage of the design process and can either be manually placed or automatically placed using EDA software. By following PCB via design rules, a circuit board can be manufactured to the exact specifications it needs.

The principle and function of PCB through-hole vias is to route the signal away from the pad. This is usually done with the use of a solder mask. This will prevent solder paste from wicking into the via, which can result in connection failures. However, if a via is positioned inside a pad drilling hole, the soldermask cannot be used on the via, which creates a reliability problem during assembly.

Buried vias

Buried vias are used to increase the circuitry on a PCB without increasing the board’s size or weight. They are fabricated using a different process from a standard double-sided PCB. Unlike other types of buried vias, they do not affect surface mount components or trace.

Buried vias are often used for design reasons, including meeting component density requirements. They also reduce board size, but the process also requires more precision checks and steps in the manufacturing process. Buried vias are also cheaper to produce, but you should use a reputable electronic contract manufacturing partner for the project.

Microvias

Microvias are holes with a small diameter that are plated. They are used to increase wiring density while reducing the number of layers on the circuit board. Microvias also reduce the need for through-hole vias and allow for a smaller overall pad size. They are also one of the most cost-effective methods for increasing wiring density. This article focuses on the benefits of microvias and how they can help you make your design work better.

Microvias are used to reduce the number of holes on a printed circuit board. They can be as small as 15 um in diameter. This technique requires more time and effort but has significant advantages. Microvias also offer better signal integrity because they have shorter connection paths with less parasitic inductance.

Anilinear ring

The PCB via hole is a hole drilled through all layers of the PCB and plated with copper for electrical connection. This hole has a cylindrical shape and a thin diameter. Its diameter and strength depend on the diameter of the copper pad surrounding it.

PCB vias can be made of different materials. The materials used in vias are often made from various metals. Vias are typically made of copper or epoxy. Using via-in-pads minimizes PCB space, resulting in smaller boards. However, this practice can be troublesome because soldering may fill up the via holes. This is why it is recommended to use via-in-pads as little as possible.

Reliability

When designing a PCB, it is important to consider how reliable the PCB via hole is. If it fails to operate reliably, it can lead to reliability issues. Reliability issues may also result from solder leakage into the via. This webinar will help you understand why reliability of PCB via holes is important, and offer some solutions.

A PCB via hole’s reliability depends on its size. There are two basic types of via holes: blind vias and buried vias. Both are important for signal integrity, as they reduce noise and EMI, and help prevent cracking and delamination. In general, the size of a PCB via hole should be six to 150 micrometers.

Benefits

PCB via holes are an excellent way to ensure the reliability of your circuit boards. They allow the PCB to be plated without air or other liquids getting trapped inside. By using this technique, you can increase the reliability of your circuit boards and improve assembly yields. This process is also very effective in helping you minimize the risk of voids.

PCB via hole technology is a popular method of signal transfer. This technique places copper pads directly on the via, rather than routing a signal trace away from the component’s copper surface. This process also reduces the amount of space needed for trace routing. This method is most commonly used with BGA components with pitches of 0.5mm and smaller. Using this technology reduces the length of signal paths and reduces both capacitance and parasitic inductance.

Diferencias entre el cableado FFC y FPC

Diferencias entre el cableado FFC y FPC

Si está pensando en sustituir o actualizar su cableado, debe conocer la diferencia entre los cables FPC y FFC. Los primeros son más gruesos y tienen dos capas de conductores que se intercalan en el punto de aislamiento. El segundo es más fino y tiene una sola capa de conductor, lo que ahorra espacio. Ambos tipos están disponibles en varios tamaños y formas. De hecho, los FPC están disponibles en tamaños tan pequeños como 0,15 mm.

CPE

Lo primero que debe saber es que existen dos tipos de circuitos impresos flexibles. Se diferencian entre sí en varios aspectos. En primer lugar, un circuito de una sola capa sólo tiene una capa conductora, mientras que un circuito multicapa tiene varias capas. Los circuitos de una sola capa suelen ser más baratos de producir que los de dos capas.

Otra diferencia importante entre FFC y FPC es el grosor de los cables. El primero es mucho más fino que el FFC y suele tener un grosor de entre 0,5 y 0,8 mm. Los segundos suelen tener entre 1,5 y 2,54 mm de grosor. Aunque ambos son flexibles, no son tan versátiles como los cables planos flexibles.

Aunque los dos tipos de cables flexibles son similares, el FFC es más versátil y suele requerir menos espacio. También ofrece una mejor supresión de EMI/RFI y elimina los problemas de acoplamiento de cables.

IDC

Uno de los factores más importantes en el cableado IDC es el tipo de conector utilizado. Existen varios tipos diferentes. El primer tipo es el conector IDC tradicional de dos piezas. Este diseño se utiliza en muchas aplicaciones y tiene muchas ventajas. Por ejemplo, puede ahorrar espacio, reducir la lista de materiales y simplificar el montaje. También elimina la necesidad de utilizar un conector de acoplamiento complementario.

El segundo tipo es el cable flexible plano. Este cable es muy fino y puede utilizarse en muchas aplicaciones. Por ejemplo, se suele utilizar en ordenadores portátiles y cables de teclado. También se utiliza en impresoras para conectar el cabezal de impresión. Aunque los dos tipos son similares, existen algunas diferencias importantes.

IDT

Si está pensando en instalar un nuevo cableado en su PC, es esencial que comprenda la diferencia entre el cableado FFC y el FPC. Aunque ambos tipos de cables son conductores, el cableado FFC tiene ventajas sobre el FPC en algunos aspectos. En primer lugar, los cables FPC suelen ser más finos. Su grosor oscila entre 0,15 mm y 0,2 mm. También son relativamente baratos y fáciles de instalar. Sin embargo, una desventaja es que conectar los FPC a los FFC puede ser complicado.

Otra diferencia importante entre los cables FFC y FPC es su paso. Mientras que los cables FFC tienen conductores de paso recto, los FPC pueden tener conductores doblados o en ángulo. Por ello, los FPC son más adecuados para la interconexión entre placas.

Aplicaciones típicas

Normalmente, FFC y FPC se utilizan en las mismas aplicaciones, como antenas, televisores LCD, cámaras, ordenadores portátiles, impresoras y aviación. Sin embargo, estos dos tipos de cables flexibles presentan algunas diferencias. Por ejemplo, los circuitos impresos flexibles están hechos de FCCL (Flexible Copper Clad Laminate), mientras que los cables planos flexibles están hechos de tereftalato de polietileno (PET), hilos de cobre y un revestimiento de tereftalato de polietileno.

Normalmente, los FFC se utilizan para cableados rectos, mientras que los FPC tienen curvas, ángulos y otros diseños. Aunque los FFC son la opción preferida para cables de datos, los FPC son más flexibles y pueden utilizarse en más aplicaciones.

¿Cuáles son los mayores problemas de la huella SMT?

¿Cuáles son los mayores problemas de la huella SMT?

SMT footprint is widely used for implementing microcontrollers. However, there are several problems related to SMT. Here are the common ones: Insufficient solder, thermal imbalances, and misplacement of components. These problems can also be caused by faulty part name, library name, and footprint.

Misplacement of components

If a component is dropped rather than placed on a surface mount footprint, the result can be a faulty PCB. In this case, a modification is necessary to the design to ensure that all parts are visible from above. In such a case, AOI may be used to detect the fault before the reflow process begins.

A bad placement of SMT components can lead to poor performance and even board failure. It is very important to place parts according to the schematics in order to avoid these problems. It is also important to keep analog and digital components separated and allow for clear signal return paths on the reference plane.

Thermal imbalances

SMT footprints can be a problem because they do not allow the proper amount of solder to reach the in-circuit test points. This can lead to poor solder joints, especially if the component is wave-solderable. However, this issue can be avoided by properly building the PCB footprint. To do this, it is important to remember to create the pads of the part to be large enough to contain solder paste. When the pads are too small, too much solder may flow over to another pad, causing bridging. This can be caused by improperly created pads or solder paste masks. It can also happen if the parts are placed too close together.

Another problem with smt footprints is the uneven amount of copper on both sides of the footprint. This can lead to component misplacement and thermal imbalance. In order to avoid this problem, PCBs should have a balanced copper distribution. It is also important to have the proper reflow profile to reduce delta T. This will also improve the surface finish of the PCB. The presence of moisture trapped within the component can also lead to thermal imbalances. Hence, PCBs should be stored in a humidity cabinet or pre-baked before use.

Insufficient solder

SMT footprint problems occur due to excess solder, which can flow into the wrong places during the soldering process. This can cause shorts or electrical problems. It also makes the solder look dull. Excess solder can also be caused by improper design, with pads and traces being too small or thin.

Often, SMT parts placed too close to in-circuit test points interfere with the ability of the test probes to make contact. Another common problem with SMT parts is that larger components may be placed in front of the smaller ones, causing shadowing. Designers should place smaller components in front of the larger components to avoid this problem.

Insufficient solder can cause poor strength and weak joints. Insufficient wetting can also lead to a metal oxide layer on the bonded object. Solder paste must be properly applied to both the pads and the pins to ensure that the joint will remain strong.

Pad-to-pin mismatch

A problem with pad-to-pin mismatch in SMT footprint can lead to insufficient solder. This problem can cause a circuit board to be rejected from a manufacturer. There are several ways to avoid it. First, always use the right footprint library. It will help you select the right size of component pads. Secondly, keep in mind that the distance between the pad edge and the silkscreen must be the same.

Second, an incorrectly matched pad is likely to result in impedance mismatch. The problem can occur at a number of locations, including board-to-board connectors, AC coupling capacitors, and cable-to-board connectors.

The Difference and Role of Solder Mask and Paste Mask on PCBs

The Difference and Role of Solder Mask and Paste Mask on PCBs

Printed circuit board (PCB)

The thickness of the solder mask and paste mask on PCBs is an important factor in determining the electrical properties of a circuit board. It can also determine the safety and feasibility of PCB assembly. The recommended thickness ranges from 8 to 15um.

The Cadence Allegro PCB Editor allows you to control the paste mask and solder mask layer configuration. It also allows you to define the width and materials of each layer. This helps you plan layer stackup for manufacturing. The tool also includes an E-Book with information on layer stackup strategies.

The solder mask color range is wide. In addition to green, solder masks are also available in blue and white colors. Some designers prefer to use different colored solder masks to make their boards more identifiable or to differentiate prototypes from finished products. However, the use of solder mask can cause a wide variety of problems in PCB manufacturing. If not used properly, it can lead to poorer quality boards and reduced lifespan.

The solder paste mask must be applied evenly. The thickness of the paste mask should be within a tolerance range of 0.2 to 4 mils. This rule is important to ensure that the solder paste is applied evenly and completely. Clearance between the solder paste and the copper wires is also important. This rule is available in popular CAD software and is a vital rule to ensuring quality PCB solder mask production.

The solder resist or paste mask is a thin layer of material on the surface of the PCB that prevents solder from leaking onto the copper traces. The mask also prevents oxidation from damaging the PCB. Further, it prevents corrosion by preventing damage due to exposure to chemicals.

Critical applications require the highest level of performance. These boards should be designed to ensure that the service does not have any interruption. These are usually high-performance commercial or industrial products. However, it is not necessary for them to be life-critical. For example, if the equipment needs to function continuously, it is necessary to ensure the PCB paste masks are both reusable.

The solder mask can be applied either with a squeegee or through a vacuum-lamination process. For large-scale production runs, stencils can be used. The stencils are typically laser-fabricated with the same data as the paste mask. In addition, stencils are treated with a variety of materials to ensure high precision and durability.

PCB paste masks and solder masks are essentially a part of the printed circuit board itself. The paste mask is a stencil layer that is smaller than the actual PCB pads. The solder paste mask has a corresponding hole in the mask that corresponds to the solder joints.

Solder masks are made by a variety of processes. Solder masks can be applied as a dry film or as a thin, opaque film. The application process for both masks is similar, but each method uses a different method to make the finished product. The first method, called LPSM, uses a photo film to expose the solder mask. This process allows the film to cure and to remove any air bubbles.