Advantages and Disadvantages of PCB Surface Finishes

Advantages and Disadvantages of PCB Surface Finishes

表面仕上げは様々な方法で分類することができます。この記事では、PCB表面仕上げの主な属性と、様々なタイプのPCB製品の要件について説明します。各タイプの利点と欠点についても説明します。PCBプロジェクトに適した表面仕上げを決定するには、以下の表を参照してください。

ENTEC 106(r)

Among the most widely used surface finishes in the PCB industry is ENEPIG. It is a two-layer metallic coating consisting of 2-8 min Au over 120-240 min Ni. The nickel acts as a barrier for the copper on the PCB surface. Gold protects the nickel from corrosion during storage and provides a low contact resistance. ENIG is often a cost-effective choice for PCBs, but it is important to use proper application procedures.

The advantages and disadvantages of electroplated gold over electrolytic nickel (ESN) are primarily cost-effectiveness and ease of plating. Electroplated gold over electrolytic nickel is very durable and has a long shelf life. However, electroplated gold over nickel has a higher price tag than other finishes. In addition, electroplated gold over nickel interferes with etching and must be handled with care to avoid damage.

ENEPIG

PCB surface finishes come in two major classifications: ENEPIG and ENIG. This article explores the differences between the two finishes and provides a comparison of their benefits and drawbacks. It also discusses when to use each.

The ENIG surface finish is a three-layer, bonded metallic finish. In the past, this material was mainly used on PCB boards with functional surface connections and high shelf-life requirements. However, the high cost of palladium and the requirement for a separate manufacturing line led to the failure of the material. In recent years, however, the material has made a comeback. Its high-frequency properties make it an excellent choice for high-frequency applications.

In comparison to ENIG, ENEPIG uses an additional layer of palladium between the gold and the nickel layers. This protects the nickel layer from oxidation and helps prevent the black pad problem. Because palladium prices have dropped recently, ENEPIG is now widely available. It offers the same benefits as ENIG but is more compatible with wire bonding. However, the process is more complex, requires additional labor, and can be expensive.

HASL

The HASL classification of PCB surface finish provides excellent solderability and is able to accommodate multiple thermal cycles. This surface finish was previously the industry standard, but the introduction of RoHS standards has forced it out of compliance. The alternative to HASL is lead-free HASL, which is more environmentally-friendly, safer, and better aligned with the directive.

Surface finish on PCBs is critical for reliability and compatibility. An appropriate surface finish can prevent the copper layer from oxidizing, which decreases the solderability of the PCB. However, the quality of the surface finish is only one part of the picture. Other aspects must be considered, such as the cost of board fabrication.

Hard gold

There are many classifications of PCB surface finishes, including the hard gold and soft gold finishes. Hard gold is a gold alloy that includes nickel and cobalt complexes. This type is used for edge connectors and PCB contacts and typically has a higher purity than soft gold. Soft gold, on the other hand, is typically used for wire bonding applications. It is also suitable for lead-free soldering.

Hard gold is generally used for components that have a high wear resistance. This is the type of plating that is used for RAM chips. Hard gold is also used on connectors, but the gold fingers must be 150 mm apart. Also, it is not recommended to place plated holes too close to gold fingers.

Immersion tin

PCB surface finishes are a critical process between PCB board manufacturing and circuit card assembly. They play an important role in maintaining the exposed copper circuitry and providing a smooth surface for soldering. Usually, the PCB surface finish is located at the outermost layer of the PCB, above the copper. This layer acts as a “coat” for the copper, which will ensure proper solderability. There are two types of PCB surface finishes: metallic and organic.

Immersion tin is a metallic finish that covers the copper on the PCB. It has the advantage of being able to be reworked easily in case of soldering errors. However, it has some disadvantages. For one, it can tarnish easily, and it has a short shelf life. As a result, it’s recommended that you use immersion tin PCB surface finishes only if you’re confident that your soldering processes are accurate.

Why Flexible PCB Need Stiffeners

Why Flexible PCB Need Stiffeners

A PCB stiffener is required to give your PCB its rigidity. There are several materials available to stiffen PCBs. Some are more expensive than others, such as FR4 or stainless steel. You need to decide which type is best for your specific needs.

Stainless steel

Flexible printed circuit boards (PCBs) are among the most popular types of PCBs on the market today. Their flexibility allows designers to design circuitry that isn’t possible with rigid circuits. However, a flexible PCB’s lack of stiffness can lead to performance and durability issues. For this reason, flexible PCBs often include stainless steel stiffeners.

A stiffener may be either thick or mass-oriented and attached to a flexible PCB on the same side as the components. If the flexible PCB is assembled with plated through-hole connections, the stiffeners may be attached to the opposite side of the connector. The stiffeners are then sealed into place with pressure-sensitive adhesives or thermal bonding.

The use of stiffeners for flexible PCBs is most commonly used for flex circuits. They help maintain a proper thickness of the flex circuit and prevent stress on the components and solder joints. This type of stiffener can be attached with thermally bonded acrylic adhesives or PSA.

アルミニウム

Stiffeners are often required for flexible PCBs. They reduce the flexibility of the board and provide mechanical support for components during assembly. They also serve a role in heat dissipation. There are several types of stiffeners, and each one provides different benefits. For example, stiffeners can improve solder resistance, increase bond strength, and limit the bending ability of the board.

Generally, rigideners are attached to a PCB using pressure sensitive adhesive tape. PSA is a popular adhesive material for this purpose, which is designed to withstand high-temperature reflow cycles. The type of adhesive used depends on the length and location of the stiffeners. If the stiffeners extend beyond the flex circuit side, it is important to use PSA to attach them to the board. Additionally, PSA may not be suitable for stiffeners that are too short or too long.

Aluminum is an alternative material for stiffeners. This material has better heat-sink and rigidity than other materials. Aluminum is more expensive, but can be more durable than other materials.

Kapton

When working with flexible PCBs, it is necessary to consider stiffeners in your design. Adding a stiffener can increase solder resistance and strengthen the connections between components. It can also help with strain relief and heat dissipation. In most cases, stiffeners are bonded on the same side of the flexible PCB as the components.

FR4 and polyimide are two materials that are commonly used for stiffeners. These materials are cheap and can provide a flat surface to the flexible PCB. They also provide excellent solder resistance and can provide the required support during pick-and-place processes.

The placement of stiffeners is important because they must be installed on the same side as the components to be mounted. This also allows easy access to the solder pads. While stiffeners are important, some customers may choose to skip the stiffeners altogether and use a FR-4 frame instead of an SMT carrier.

FR4

FR4 stiffeners for flexible PCBs are an excellent way to maintain and route flexible PCBs. They work by extending a strip of FR-4 stiffener material into a flexible PCB array. This helps the flex PCB maintain its proper shape and avoid cracks in the conductor layers. In addition to providing support during assembly, these devices can also act as heat dissipation devices.

FR4 stiffeners can be made of a variety of materials, including stainless steel and aluminum. Stainless steel stiffeners are more resistant to corrosion, are more adaptable and more resistant to a wide range of temperature conditions. Stainless steel stiffeners are usually thin, ranging from 0.1 to 0.45mm.

FR4 stiffeners are added to a flexible circuit as the final fabrication step. They can be applied with either pressure sensitive or thermal-set adhesive. The choice may depend on the end-use, but pressure-sensitive stiffeners are usually less expensive than thermal-set adhesive. In addition, thermal-set adhesive requires the flex to be placed in a lamination press, which applies heat to cure the adhesive.

Important Considerations While Hiring Electronics Manufacturing Companies

Important Considerations While Hiring Electronics Manufacturing Companies

The quality of products produced by an electronics manufacturing company is a key determining factor for its success in the market. Companies that hold quality certifications are an added bonus. Moreover, it is important for a company to target a specific market for its product. In addition, the company should have the right market targeting strategy and must have quality certifications to support this claim.

Product development and production are important considerations while hiring electronics manufacturing companies

The process of developing and producing electronic products is an important part of the electronics manufacturing process. The two components work together to create products that meet client specifications. There are many types of products that are manufactured in this industry. Consumer products include the items that we use every day, while industrial products are used by industries such as aerospace and automotive. Military products are used by nations’ armed forces.

When hiring an electronics manufacturing company, there are several factors that you should keep in mind. First, you need to develop your team. The team should include employees, partners, suppliers, and vendors. The employees are in charge of producing the goods, while the partners and suppliers supply equipment and raw materials. Finally, the vendors are in charge of selling the products to the end users. Another consideration is finances. You should keep track of your expenses using accounting software, or you should hire a bookkeeper to handle the books.

Quality control is another important consideration. A quality control system helps to reduce losses and setbacks and keeps costs low. Similarly, quality control helps to ensure compliance with government regulations. In some industries, such as the automotive industry, the output of the product may directly affect the lives of consumers. Therefore, a company should never skimp on quality control just to save money.

Quality certifications are added bonuses to any quality assurance in electronics manufacturing

Although quality standards in the electronics industry have become a top concern, quality certifications are not mandatory. This means that electronic contract manufacturers, small and medium-sized businesses, and even some government agencies do not need to receive quality certifications in order to provide services. However, quality certifications are often required by defense contractors, government agencies, and the transportation industry.

Choosing an electronics manufacturing company with ISO certification will help you save time and money and increase your customer’s satisfaction. In addition, choosing a certified company will give you a peace of mind knowing that their processes are of a high standard and that they are continually improving.

Aside from improving the manufacturing process, quality certifications will help you improve your products and communicate with vendors. Consistency in quality is a vital factor for success and profitability in manufacturing. In electronics, consistency is critical. Compliance with standards and specifications will increase customer satisfaction and brand reputation.

Targeting markets is critical to success in the electronics manufacturing business

If you have an idea for an electronics manufacturing business, you need to target markets for your products. This can be accomplished in two ways: product development and production. Product development involves the design and creation of new products and production involves building products that meet client specifications. There are two main types of products to target: consumer products, which are items that we use on a daily basis, and industrial products, which are products used by industrial or military forces all over the world.

Regardless of the type of electronics manufacturing business, it’s important to understand the demographics of the target markets. Market segmentation can be done on a variety of bases, including gender, age, and income level. Demographic segmentation can give you a list of groups that are most likely to purchase your products. Psychographic segmentation, on the other hand, can help you target the most profitable market segments.

In addition to identifying the most profitable markets, you also need to understand how global markets are impacted by events such as Ebola. The Ebola outbreak will impact countries outside Germany, including the United States, China, and India. This will affect the automotive, computer, and communications sectors. It could also increase the need for remote monitoring devices that will allow businesses to continue working even during a lockdown situation.

Problems with hiring in the electronics manufacturing sector

With the skills gap in the electronics industry becoming more acute, companies must adapt to retain good employees and attract new ones. This means offering incentives such as flexible schedules, referral bonuses, and better salaries. Hiring good talent is essential to the long-term success of an organization, so employers need to look for ways to keep employees happy and engaged. A key element of successful hiring is candidate assessment, especially soft skills, which should be emphasized.

What Is The Function And Principle Of PCB Via Hole?

What Is The Function And Principle Of PCB Via Hole?

A PCB via hole is an open hole, drilled through a PCB. The wall of the hole is coated with a plating solution, which allows electrical signals to flow through the hole. When drilling a via hole, it is important to follow fabricator rules to ensure the correct diameter and aspect ratio. The minimum distance between adjacent vias must also be observed.

Through-hole vias

PCB through-hole vias are commonly used for signal transitions on circuit boards. There are various types of vias, including blind vias, buried vias, and microvias. Each type of via requires a certain procedure during placement. These vias are placed during the routing stage of the design process and can either be manually placed or automatically placed using EDA software. By following PCB via design rules, a circuit board can be manufactured to the exact specifications it needs.

The principle and function of PCB through-hole vias is to route the signal away from the pad. This is usually done with the use of a solder mask. This will prevent solder paste from wicking into the via, which can result in connection failures. However, if a via is positioned inside a pad drilling hole, the soldermask cannot be used on the via, which creates a reliability problem during assembly.

Buried vias

Buried vias are used to increase the circuitry on a PCB without increasing the board’s size or weight. They are fabricated using a different process from a standard double-sided PCB. Unlike other types of buried vias, they do not affect surface mount components or trace.

Buried vias are often used for design reasons, including meeting component density requirements. They also reduce board size, but the process also requires more precision checks and steps in the manufacturing process. Buried vias are also cheaper to produce, but you should use a reputable electronic contract manufacturing partner for the project.

Microvias

Microvias are holes with a small diameter that are plated. They are used to increase wiring density while reducing the number of layers on the circuit board. Microvias also reduce the need for through-hole vias and allow for a smaller overall pad size. They are also one of the most cost-effective methods for increasing wiring density. This article focuses on the benefits of microvias and how they can help you make your design work better.

Microvias are used to reduce the number of holes on a printed circuit board. They can be as small as 15 um in diameter. This technique requires more time and effort but has significant advantages. Microvias also offer better signal integrity because they have shorter connection paths with less parasitic inductance.

Anilinear ring

The PCB via hole is a hole drilled through all layers of the PCB and plated with copper for electrical connection. This hole has a cylindrical shape and a thin diameter. Its diameter and strength depend on the diameter of the copper pad surrounding it.

PCB vias can be made of different materials. The materials used in vias are often made from various metals. Vias are typically made of copper or epoxy. Using via-in-pads minimizes PCB space, resulting in smaller boards. However, this practice can be troublesome because soldering may fill up the via holes. This is why it is recommended to use via-in-pads as little as possible.

Reliability

When designing a PCB, it is important to consider how reliable the PCB via hole is. If it fails to operate reliably, it can lead to reliability issues. Reliability issues may also result from solder leakage into the via. This webinar will help you understand why reliability of PCB via holes is important, and offer some solutions.

A PCB via hole’s reliability depends on its size. There are two basic types of via holes: blind vias and buried vias. Both are important for signal integrity, as they reduce noise and EMI, and help prevent cracking and delamination. In general, the size of a PCB via hole should be six to 150 micrometers.

Benefits

PCB via holes are an excellent way to ensure the reliability of your circuit boards. They allow the PCB to be plated without air or other liquids getting trapped inside. By using this technique, you can increase the reliability of your circuit boards and improve assembly yields. This process is also very effective in helping you minimize the risk of voids.

PCB via hole technology is a popular method of signal transfer. This technique places copper pads directly on the via, rather than routing a signal trace away from the component’s copper surface. This process also reduces the amount of space needed for trace routing. This method is most commonly used with BGA components with pitches of 0.5mm and smaller. Using this technology reduces the length of signal paths and reduces both capacitance and parasitic inductance.

FFC配線とFPC配線の違いを理解する

FFC配線とFPC配線の違いを理解する

If you’re thinking of replacing or upgrading your wiring, you should know the difference between FPC and FFC cables. The former is thicker and has two layers of wire sandwiching the insulation point. The latter is thinner and has a single conductor layer, saving space. Both types are available in a variety of sizes and shapes. In fact, FPCs are available in as small as 0.15mm.

FPC

The first thing that you need to know is that there are two types of flexible printed circuits. They differ from each other in several ways. First, a single-layer circuit has only one conductor layer while a multilayer circuit has multiple layers. Single-layer circuits are generally cheaper to produce than double-sided circuits.

Another major difference between FFC and FPC is the thickness of the cables. The former is much thinner than FFC and is generally between 0.5 and 0.8mm. The latter is typically between 1.5 and 2.54mm thick. While they are both flexible, they are not as versatile as flexible flat cables.

While the two kinds of flexible cables are similar, FFC is more versatile and often requires less space. It also offers better EMI/RFI suppression and eliminates wire coupling problems.

IDC

One of the most important factors in IDC wiring is the type of connector used. There are a few different types available. The first type is the traditional two-piece IDC connector. This design is used in many applications and has many advantages. For example, it can save space, reduce bill of materials and simplify assembly. It also eliminates the need to use a complementary mating connector.

The second type is the flat flex cable. This cable is very thin and can be used in many applications. For example, it is commonly used in laptops and keypad cables. It is also used in printers to connect to the printhead. While the two types are similar, there are a few major differences.

IDT

If you’re planning to install new wiring in your PC, it’s essential to understand the difference between FFC and FPC wiring. While both types of cables are conductive, FFC wiring has advantages over FPC in a few ways. First, FPC cables are generally thinner. They range in thickness from 0.15mm to 0.2mm. They’re also relatively inexpensive, and they’re easy to install. However, one disadvantage is that connecting FPCs to FFCs can be complicated.

Another major difference between FFC and FPC wiring is their pitch. While FFC cables have straight through conductors, FPCs can have bent or angle conductors. As such, FPCs are better suited for board-to-board interconnect.

Typical applications

Typically, FFC and FPC are used in the same applications, such as antennas, LCD televisions, cameras, laptops, printers, and aviation. These two types of flexible wires have some differences, however. For example, flexible printed circuits are made of FCCL (Flexible Copper Clad Laminate), while flexible flat cables are made of polyethylene terephthalate (PET), copper wires, and a polyethylene terephthalate coating.

Typically, FFCs are used for straight-through wiring, while FPCs have bends, angles, and other designs. While FFCs are the preferred choice for data cables, FPCs are more flexible and can be used in more applications.

SMTフットプリントの最大の問題点とは?

SMTフットプリントの最大の問題点とは?

SMTフットプリントは、マイクロコントローラーの実装に広く使用されている。しかし、SMTにはいくつかの問題があります。以下に一般的なものを挙げる:はんだ不足、熱の不均衡、部品の配置ミスなどです。これらの問題は、部品名、ライブラリ名、フットプリントの誤りによっても発生します。

部品の配置ミス

部品が表面実装フットプリントに配置されずに落下した場合、その結果、不良PCBが発生する可能性がある。この場合、すべての部品が上から見えるように設計を修正する必要があります。このような場合、リフロー工程が始まる前にAOIを使用して不具合を検出することができます。

SMT部品の配置を誤ると、性能の低下や基板の故障につながることさえあります。このような問題を避けるためには、回路図に従って部品を配置することが非常に重要です。また、アナログとデジタルの部品を分離し、基準プレーンの信号リターンパスを明確にすることも重要です。

熱の不均衡

SMT フットプリントは、回路内テストポイントに適切な量のはんだが届かないため、問題となることがあります。これは、特にウェーブはんだ付け可能なコンポーネントの場合、はんだ接合不良につながる可能性があります。しかし、この問題はPCBフットプリントを適切に作成することで回避できます。そのためには、部品のパッドをはんだペーストを含むのに十分な大きさに作成することを忘れないことが重要です。パッドが小さすぎると、はんだが他のパッドに流れすぎてブリッジが発生することがあります。この現象は、パッドやソルダーペーストのマスクが不適切に作成されている場合に起こります。また、部品を近づけすぎた場合にも起こります。

smtフットプリントのもう一つの問題は、フットプリントの両側の銅の量が不均等であることです。これは部品の配置ミスや熱の不均衡につながります。この問題を避けるために、PCBはバランスの取れた銅分布を持つべきです。また、デルタTを減らすために適切なリフロー・プロファイルを持つことも重要です。これにより、PCBの表面仕上げも改善されます。部品内に湿気がこもることも、熱の不均衡につながります。したがって、PCBは湿度キャビネットに保管するか、使用前にプリベークする必要があります。

はんだ不足

SMTフットプリントの問題は、はんだ付けプロセス中に間違った場所に流れ込む余分なはんだが原因で発生します。これはショートや電気的問題の原因となります。また、はんだがくすんで見えます。余分なはんだは、パッドやトレースが小さすぎたり薄すぎたりする不適切な設計によっても発生します。

インサーキットテストポイントに近すぎるSMT部品は、テストプローブが接触するのを妨害することがよくあります。SMT部品でよくあるもう一つの問題は、大きな部品が小さな部品の前に配置され、影ができることです。設計者は、この問題を避けるために、小さな部品を大きな部品の前に配置する必要があります。

はんだが不十分だと、接合部の強度が低下したり、接合部が弱くなったりします。また、濡れ性が不十分な場合、被接合物に金属酸化物層が生じることがあります。接合部の強度を確保するためには、はんだペーストをパッドとピンの両方に適切に塗布する必要があります。

パッドとピンの不一致

SMTフットプリントのパッドとピンの不一致の問題は、はんだ不足につながる可能性があります。この問題は、回路基板がメーカーからリジェクトされる原因となります。これを避けるにはいくつかの方法があります。まず、常に正しいフットプリント・ライブラリを使用してください。これは、部品パッドの適切なサイズを選択するのに役立ちます。次に、パッドエッジとシルクスクリーン間の距離が同じでなければならないことに留意してください。

第二に、不適切にマッチングされたパッドは、インピーダンスの不整合を引き起こす可能性が高い。この問題は、基板対基板コネクタ、ACカップリングコンデンサ、ケーブル対基板コネクタなど、多くの場所で発生する可能性がある。

PCBにおけるソルダーマスクとペーストマスクの違いと役割

PCBにおけるソルダーマスクとペーストマスクの違いと役割

プリント基板(PCB)

PCB上のソルダーマスクとペーストマスクの厚さは、回路基板の電気的特性を決定する重要な要素です。また、PCBアセンブリの安全性と実行可能性を決定することができます。推奨される厚さは8~15μmです。

Cadence Allegro PCB Editor では、ペーストマスクとソルダーマスクのレイヤ構成を制御できます。また、各レイヤーの幅や材質も定義できます。これは、製造のためのレイヤスタックアップを計画するのに役立ちます。このツールには、レイヤスタックアップ戦略に関する情報が記載されたE-Bookも含まれています。

ソルダーマスクのカラーバリエーションは幅広い。緑色のほか、青色や白色もあります。設計者の中には、基板をより識別しやすくするため、または試作品と完成品を区別するために、異なる色のソルダーマスクを使用することを好む人もいます。しかし、ソルダーマスクの使用はPCB製造において様々な問題を引き起こす可能性がある。適切に使用しないと、基板の品質が低下したり、寿命が短くなったりします。

ソルダーペーストマスクは均一に塗布すること。ペーストマスクの厚さは、0.2~4ミルの許容範囲内でなければなりません。このルールは、はんだペーストを均一かつ完全に塗布するために重要です。はんだペーストと銅線の間のクリアランスも重要です。このルールは一般的なCADソフトウェアで利用可能であり、高品質のPCBソルダーマスクを製造するために不可欠なルールです。

ソルダーレジストまたはペーストマスクは、PCBの表面にある薄い材料の層で、はんだが銅トレースに漏れるのを防ぎます。マスクはまた、酸化によるPCBへのダメージを防ぎます。さらに、化学物質への暴露による損傷を防ぐことで、腐食を防ぎます。

クリティカルなアプリケーションには最高レベルのパフォーマンスが要求される。これらのボードは、サービスが中断しないように設計されている必要があります。これらは通常、高性能な商業用または工業用製品です。しかし、ライフクリティカルである必要はありません。例えば、装置が継続的に機能する必要がある場合、PCBペーストマスクが両方とも再利用可能であることを保証する必要があります。

ソルダーマスクはスキージまたは真空ラミネーションプロセスで塗布することができます。大規模生産の場合は、ステンシルを使用することができます。ステンシルは通常、ペーストマスクと同じデータでレーザー加工されます。さらに、ステンシルは高精度と耐久性を確保するために、さまざまな材料で処理されます。

PCBペーストマスクとソルダーマスクは、基本的にプリント回路基板自体の一部です。ペーストマスクは、実際のPCBパッドよりも小さいステンシル層です。はんだペーストマスクには、はんだ接合部に対応する穴が開いています。

ソルダーマスクは様々なプロセスで作られる。ソルダーマスクはドライフィルムとして塗布する方法と、薄い不透明なフィルムとして塗布する方法がある。どちらのマスクも塗布工程は似ていますが、それぞれの方法で完成品を作る方法が異なります。LPSMと呼ばれる最初の方法は、写真フィルムを使用してソルダー・マスクを露出させます。この工程でフィルムを硬化させ、気泡を除去する。