Vantaggi e svantaggi delle finiture superficiali dei PCB

Vantaggi e svantaggi delle finiture superficiali dei PCB

Le finiture superficiali possono essere classificate in molti modi diversi. Questo articolo illustra i principali attributi delle finiture superficiali dei PCB e i requisiti dei vari tipi di prodotti PCB. Vengono discussi i vantaggi e gli svantaggi di ciascun tipo. Per determinare la giusta finitura superficiale per il vostro progetto PCB, potete fare riferimento alla seguente tabella.

ENTEC 106(r)

Tra le finiture superficiali più utilizzate nell'industria dei PCB c'è l'ENEPIG. Si tratta di un rivestimento metallico a due strati composto da 2-8 min di Au su 120-240 min di Ni. Il nichel funge da barriera per il rame sulla superficie del PCB. L'oro protegge il nichel dalla corrosione durante lo stoccaggio e fornisce una bassa resistenza di contatto. L'ENIG è spesso una scelta conveniente per i PCB, ma è importante utilizzare procedure di applicazione corrette.

I vantaggi e gli svantaggi dell'oro galvanico rispetto al nichel elettrolitico (ESN) sono principalmente l'economicità e la facilità di placcatura. L'oro galvanico rispetto al nichel elettrolitico è molto resistente e ha una lunga durata. Tuttavia, l'oro galvanico su nichel ha un prezzo più elevato rispetto ad altre finiture. Inoltre, l'oro galvanico su nichel interferisce con l'incisione e deve essere maneggiato con cura per evitare danni.

ENEPIG

Le finiture superficiali dei PCB si dividono in due categorie principali: Questo articolo esplora le differenze tra le due finiture e fornisce un confronto dei loro vantaggi e svantaggi. Inoltre, si discute su quando utilizzare ciascuna di esse.

La finitura superficiale ENIG è una finitura metallica incollata a tre strati. In passato, questo materiale veniva utilizzato principalmente su schede PCB con connessioni superficiali funzionali e requisiti di durata elevati. Tuttavia, il costo elevato del palladio e la necessità di una linea di produzione separata hanno portato al fallimento del materiale. Negli ultimi anni, tuttavia, questo materiale è tornato in auge. Le sue proprietà ad alta frequenza lo rendono una scelta eccellente per le applicazioni ad alta frequenza.

Rispetto a ENIG, ENEPIG utilizza uno strato aggiuntivo di palladio tra gli strati di oro e nichel. Questo protegge lo strato di nichel dall'ossidazione e aiuta a prevenire il problema del black pad. Poiché i prezzi del palladio sono scesi di recente, ENEPIG è ora ampiamente disponibile. Offre gli stessi vantaggi dell'ENIG, ma è più compatibile con il wire bonding. Tuttavia, il processo è più complesso, richiede manodopera aggiuntiva e può essere costoso.

HASL

La classificazione HASL della finitura superficiale dei PCB offre un'eccellente saldabilità ed è in grado di sopportare molteplici cicli termici. In passato questa finitura superficiale era lo standard del settore, ma l'introduzione degli standard RoHS ne ha reso impossibile la conformità. L'alternativa all'HASL è l'HASL senza piombo, più ecologico, più sicuro e più conforme alla direttiva.

La finitura superficiale dei PCB è fondamentale per l'affidabilità e la compatibilità. Un'adeguata finitura superficiale può evitare che lo strato di rame si ossidi, riducendo la saldabilità del PCB. Tuttavia, la qualità della finitura superficiale è solo una parte del quadro. È necessario considerare altri aspetti, come il costo di fabbricazione della scheda.

Oro duro

Esistono diverse classificazioni delle finiture superficiali dei PCB, tra cui le finiture in oro duro e in oro morbido. L'oro duro è una lega d'oro che include complessi di nichel e cobalto. Questo tipo è utilizzato per i connettori perimetrali e per i contatti dei circuiti stampati e ha in genere una purezza maggiore rispetto all'oro morbido. L'oro morbido, invece, è tipicamente utilizzato per applicazioni di wire bonding. È anche adatto alla saldatura senza piombo.

L'oro duro è generalmente utilizzato per i componenti che presentano un'elevata resistenza all'usura. È il tipo di placcatura utilizzato per i chip RAM. L'oro duro viene utilizzato anche per i connettori, ma le dita d'oro devono essere distanziate di 150 mm. Inoltre, non è consigliabile posizionare i fori placcati troppo vicini alle dita dorate.

Stagno ad immersione

Le finiture superficiali dei PCB sono un processo critico tra la produzione delle schede e l'assemblaggio dei circuiti. Svolgono un ruolo importante nel mantenere il circuito di rame esposto e nel fornire una superficie liscia per la saldatura. Di solito, la finitura superficiale del PCB si trova nello strato più esterno del PCB, sopra il rame. Questo strato funge da "rivestimento" per il rame, assicurando la corretta saldabilità. Esistono due tipi di finitura superficiale per PCB: metallica e organica.

Lo stagno per immersione è una finitura metallica che ricopre il rame del PCB. Ha il vantaggio di poter essere rilavorata facilmente in caso di errori di saldatura. Tuttavia, presenta alcuni svantaggi. Ad esempio, può appannarsi facilmente e ha una durata di conservazione breve. Di conseguenza, si consiglia di utilizzare finiture superficiali a stagno per PCB a immersione solo se si è sicuri che i processi di saldatura siano accurati.

Perché i PCB flessibili hanno bisogno di irrigidimenti

Perché i PCB flessibili hanno bisogno di irrigidimenti

A PCB stiffener is required to give your PCB its rigidity. There are several materials available to stiffen PCBs. Some are more expensive than others, such as FR4 or stainless steel. You need to decide which type is best for your specific needs.

Stainless steel

Flexible printed circuit boards (PCBs) are among the most popular types of PCBs on the market today. Their flexibility allows designers to design circuitry that isn’t possible with rigid circuits. However, a flexible PCB’s lack of stiffness can lead to performance and durability issues. For this reason, flexible PCBs often include stainless steel stiffeners.

A stiffener may be either thick or mass-oriented and attached to a flexible PCB on the same side as the components. If the flexible PCB is assembled with plated through-hole connections, the stiffeners may be attached to the opposite side of the connector. The stiffeners are then sealed into place with pressure-sensitive adhesives or thermal bonding.

The use of stiffeners for flexible PCBs is most commonly used for flex circuits. They help maintain a proper thickness of the flex circuit and prevent stress on the components and solder joints. This type of stiffener can be attached with thermally bonded acrylic adhesives or PSA.

Alluminio

Stiffeners are often required for flexible PCBs. They reduce the flexibility of the board and provide mechanical support for components during assembly. They also serve a role in heat dissipation. There are several types of stiffeners, and each one provides different benefits. For example, stiffeners can improve solder resistance, increase bond strength, and limit the bending ability of the board.

Generally, rigideners are attached to a PCB using pressure sensitive adhesive tape. PSA is a popular adhesive material for this purpose, which is designed to withstand high-temperature reflow cycles. The type of adhesive used depends on the length and location of the stiffeners. If the stiffeners extend beyond the flex circuit side, it is important to use PSA to attach them to the board. Additionally, PSA may not be suitable for stiffeners that are too short or too long.

Aluminum is an alternative material for stiffeners. This material has better heat-sink and rigidity than other materials. Aluminum is more expensive, but can be more durable than other materials.

Kapton

When working with flexible PCBs, it is necessary to consider stiffeners in your design. Adding a stiffener can increase solder resistance and strengthen the connections between components. It can also help with strain relief and heat dissipation. In most cases, stiffeners are bonded on the same side of the flexible PCB as the components.

FR4 and polyimide are two materials that are commonly used for stiffeners. These materials are cheap and can provide a flat surface to the flexible PCB. They also provide excellent solder resistance and can provide the required support during pick-and-place processes.

The placement of stiffeners is important because they must be installed on the same side as the components to be mounted. This also allows easy access to the solder pads. While stiffeners are important, some customers may choose to skip the stiffeners altogether and use a FR-4 frame instead of an SMT carrier.

FR4

FR4 stiffeners for flexible PCBs are an excellent way to maintain and route flexible PCBs. They work by extending a strip of FR-4 stiffener material into a flexible PCB array. This helps the flex PCB maintain its proper shape and avoid cracks in the conductor layers. In addition to providing support during assembly, these devices can also act as heat dissipation devices.

FR4 stiffeners can be made of a variety of materials, including stainless steel and aluminum. Stainless steel stiffeners are more resistant to corrosion, are more adaptable and more resistant to a wide range of temperature conditions. Stainless steel stiffeners are usually thin, ranging from 0.1 to 0.45mm.

FR4 stiffeners are added to a flexible circuit as the final fabrication step. They can be applied with either pressure sensitive or thermal-set adhesive. The choice may depend on the end-use, but pressure-sensitive stiffeners are usually less expensive than thermal-set adhesive. In addition, thermal-set adhesive requires the flex to be placed in a lamination press, which applies heat to cure the adhesive.

Important Considerations While Hiring Electronics Manufacturing Companies

Important Considerations While Hiring Electronics Manufacturing Companies

The quality of products produced by an electronics manufacturing company is a key determining factor for its success in the market. Companies that hold quality certifications are an added bonus. Moreover, it is important for a company to target a specific market for its product. In addition, the company should have the right market targeting strategy and must have quality certifications to support this claim.

Product development and production are important considerations while hiring electronics manufacturing companies

The process of developing and producing electronic products is an important part of the electronics manufacturing process. The two components work together to create products that meet client specifications. There are many types of products that are manufactured in this industry. Consumer products include the items that we use every day, while industrial products are used by industries such as aerospace and automotive. Military products are used by nations’ armed forces.

When hiring an electronics manufacturing company, there are several factors that you should keep in mind. First, you need to develop your team. The team should include employees, partners, suppliers, and vendors. The employees are in charge of producing the goods, while the partners and suppliers supply equipment and raw materials. Finally, the vendors are in charge of selling the products to the end users. Another consideration is finances. You should keep track of your expenses using accounting software, or you should hire a bookkeeper to handle the books.

Quality control is another important consideration. A quality control system helps to reduce losses and setbacks and keeps costs low. Similarly, quality control helps to ensure compliance with government regulations. In some industries, such as the automotive industry, the output of the product may directly affect the lives of consumers. Therefore, a company should never skimp on quality control just to save money.

Quality certifications are added bonuses to any quality assurance in electronics manufacturing

Although quality standards in the electronics industry have become a top concern, quality certifications are not mandatory. This means that electronic contract manufacturers, small and medium-sized businesses, and even some government agencies do not need to receive quality certifications in order to provide services. However, quality certifications are often required by defense contractors, government agencies, and the transportation industry.

Choosing an electronics manufacturing company with ISO certification will help you save time and money and increase your customer’s satisfaction. In addition, choosing a certified company will give you a peace of mind knowing that their processes are of a high standard and that they are continually improving.

Aside from improving the manufacturing process, quality certifications will help you improve your products and communicate with vendors. Consistency in quality is a vital factor for success and profitability in manufacturing. In electronics, consistency is critical. Compliance with standards and specifications will increase customer satisfaction and brand reputation.

Targeting markets is critical to success in the electronics manufacturing business

If you have an idea for an electronics manufacturing business, you need to target markets for your products. This can be accomplished in two ways: product development and production. Product development involves the design and creation of new products and production involves building products that meet client specifications. There are two main types of products to target: consumer products, which are items that we use on a daily basis, and industrial products, which are products used by industrial or military forces all over the world.

Regardless of the type of electronics manufacturing business, it’s important to understand the demographics of the target markets. Market segmentation can be done on a variety of bases, including gender, age, and income level. Demographic segmentation can give you a list of groups that are most likely to purchase your products. Psychographic segmentation, on the other hand, can help you target the most profitable market segments.

In addition to identifying the most profitable markets, you also need to understand how global markets are impacted by events such as Ebola. The Ebola outbreak will impact countries outside Germany, including the United States, China, and India. This will affect the automotive, computer, and communications sectors. It could also increase the need for remote monitoring devices that will allow businesses to continue working even during a lockdown situation.

Problems with hiring in the electronics manufacturing sector

With the skills gap in the electronics industry becoming more acute, companies must adapt to retain good employees and attract new ones. This means offering incentives such as flexible schedules, referral bonuses, and better salaries. Hiring good talent is essential to the long-term success of an organization, so employers need to look for ways to keep employees happy and engaged. A key element of successful hiring is candidate assessment, especially soft skills, which should be emphasized.

What Is The Function And Principle Of PCB Via Hole?

What Is The Function And Principle Of PCB Via Hole?

A PCB via hole is an open hole, drilled through a PCB. The wall of the hole is coated with a plating solution, which allows electrical signals to flow through the hole. When drilling a via hole, it is important to follow fabricator rules to ensure the correct diameter and aspect ratio. The minimum distance between adjacent vias must also be observed.

Through-hole vias

PCB through-hole vias are commonly used for signal transitions on circuit boards. There are various types of vias, including blind vias, buried vias, and microvias. Each type of via requires a certain procedure during placement. These vias are placed during the routing stage of the design process and can either be manually placed or automatically placed using EDA software. By following PCB via design rules, a circuit board can be manufactured to the exact specifications it needs.

The principle and function of PCB through-hole vias is to route the signal away from the pad. This is usually done with the use of a solder mask. This will prevent solder paste from wicking into the via, which can result in connection failures. However, if a via is positioned inside a pad drilling hole, the soldermask cannot be used on the via, which creates a reliability problem during assembly.

Buried vias

Buried vias are used to increase the circuitry on a PCB without increasing the board’s size or weight. They are fabricated using a different process from a standard double-sided PCB. Unlike other types of buried vias, they do not affect surface mount components or trace.

Buried vias are often used for design reasons, including meeting component density requirements. They also reduce board size, but the process also requires more precision checks and steps in the manufacturing process. Buried vias are also cheaper to produce, but you should use a reputable electronic contract manufacturing partner for the project.

Microvias

Microvias are holes with a small diameter that are plated. They are used to increase wiring density while reducing the number of layers on the circuit board. Microvias also reduce the need for through-hole vias and allow for a smaller overall pad size. They are also one of the most cost-effective methods for increasing wiring density. This article focuses on the benefits of microvias and how they can help you make your design work better.

Microvias are used to reduce the number of holes on a printed circuit board. They can be as small as 15 um in diameter. This technique requires more time and effort but has significant advantages. Microvias also offer better signal integrity because they have shorter connection paths with less parasitic inductance.

Anilinear ring

The PCB via hole is a hole drilled through all layers of the PCB and plated with copper for electrical connection. This hole has a cylindrical shape and a thin diameter. Its diameter and strength depend on the diameter of the copper pad surrounding it.

PCB vias can be made of different materials. The materials used in vias are often made from various metals. Vias are typically made of copper or epoxy. Using via-in-pads minimizes PCB space, resulting in smaller boards. However, this practice can be troublesome because soldering may fill up the via holes. This is why it is recommended to use via-in-pads as little as possible.

Reliability

When designing a PCB, it is important to consider how reliable the PCB via hole is. If it fails to operate reliably, it can lead to reliability issues. Reliability issues may also result from solder leakage into the via. This webinar will help you understand why reliability of PCB via holes is important, and offer some solutions.

A PCB via hole’s reliability depends on its size. There are two basic types of via holes: blind vias and buried vias. Both are important for signal integrity, as they reduce noise and EMI, and help prevent cracking and delamination. In general, the size of a PCB via hole should be six to 150 micrometers.

Benefits

PCB via holes are an excellent way to ensure the reliability of your circuit boards. They allow the PCB to be plated without air or other liquids getting trapped inside. By using this technique, you can increase the reliability of your circuit boards and improve assembly yields. This process is also very effective in helping you minimize the risk of voids.

PCB via hole technology is a popular method of signal transfer. This technique places copper pads directly on the via, rather than routing a signal trace away from the component’s copper surface. This process also reduces the amount of space needed for trace routing. This method is most commonly used with BGA components with pitches of 0.5mm and smaller. Using this technology reduces the length of signal paths and reduces both capacitance and parasitic inductance.

Understanding the Difference Between FFC and FPC Wiring

Understanding the Difference Between FFC and FPC Wiring

If you’re thinking of replacing or upgrading your wiring, you should know the difference between FPC and FFC cables. The former is thicker and has two layers of wire sandwiching the insulation point. The latter is thinner and has a single conductor layer, saving space. Both types are available in a variety of sizes and shapes. In fact, FPCs are available in as small as 0.15mm.

FPC

The first thing that you need to know is that there are two types of flexible printed circuits. They differ from each other in several ways. First, a single-layer circuit has only one conductor layer while a multilayer circuit has multiple layers. Single-layer circuits are generally cheaper to produce than double-sided circuits.

Another major difference between FFC and FPC is the thickness of the cables. The former is much thinner than FFC and is generally between 0.5 and 0.8mm. The latter is typically between 1.5 and 2.54mm thick. While they are both flexible, they are not as versatile as flexible flat cables.

While the two kinds of flexible cables are similar, FFC is more versatile and often requires less space. It also offers better EMI/RFI suppression and eliminates wire coupling problems.

IDC

One of the most important factors in IDC wiring is the type of connector used. There are a few different types available. The first type is the traditional two-piece IDC connector. This design is used in many applications and has many advantages. For example, it can save space, reduce bill of materials and simplify assembly. It also eliminates the need to use a complementary mating connector.

The second type is the flat flex cable. This cable is very thin and can be used in many applications. For example, it is commonly used in laptops and keypad cables. It is also used in printers to connect to the printhead. While the two types are similar, there are a few major differences.

IDT

If you’re planning to install new wiring in your PC, it’s essential to understand the difference between FFC and FPC wiring. While both types of cables are conductive, FFC wiring has advantages over FPC in a few ways. First, FPC cables are generally thinner. They range in thickness from 0.15mm to 0.2mm. They’re also relatively inexpensive, and they’re easy to install. However, one disadvantage is that connecting FPCs to FFCs can be complicated.

Another major difference between FFC and FPC wiring is their pitch. While FFC cables have straight through conductors, FPCs can have bent or angle conductors. As such, FPCs are better suited for board-to-board interconnect.

Typical applications

Typically, FFC and FPC are used in the same applications, such as antennas, LCD televisions, cameras, laptops, printers, and aviation. These two types of flexible wires have some differences, however. For example, flexible printed circuits are made of FCCL (Flexible Copper Clad Laminate), while flexible flat cables are made of polyethylene terephthalate (PET), copper wires, and a polyethylene terephthalate coating.

Typically, FFCs are used for straight-through wiring, while FPCs have bends, angles, and other designs. While FFCs are the preferred choice for data cables, FPCs are more flexible and can be used in more applications.

Quali sono i problemi maggiori con l'ingombro SMT?

Quali sono i problemi maggiori con l'ingombro SMT?

SMT footprint is widely used for implementing microcontrollers. However, there are several problems related to SMT. Here are the common ones: Insufficient solder, thermal imbalances, and misplacement of components. These problems can also be caused by faulty part name, library name, and footprint.

Misplacement of components

If a component is dropped rather than placed on a surface mount footprint, the result can be a faulty PCB. In this case, a modification is necessary to the design to ensure that all parts are visible from above. In such a case, AOI may be used to detect the fault before the reflow process begins.

A bad placement of SMT components can lead to poor performance and even board failure. It is very important to place parts according to the schematics in order to avoid these problems. It is also important to keep analog and digital components separated and allow for clear signal return paths on the reference plane.

Thermal imbalances

SMT footprints can be a problem because they do not allow the proper amount of solder to reach the in-circuit test points. This can lead to poor solder joints, especially if the component is wave-solderable. However, this issue can be avoided by properly building the PCB footprint. To do this, it is important to remember to create the pads of the part to be large enough to contain solder paste. When the pads are too small, too much solder may flow over to another pad, causing bridging. This can be caused by improperly created pads or solder paste masks. It can also happen if the parts are placed too close together.

Another problem with smt footprints is the uneven amount of copper on both sides of the footprint. This can lead to component misplacement and thermal imbalance. In order to avoid this problem, PCBs should have a balanced copper distribution. It is also important to have the proper reflow profile to reduce delta T. This will also improve the surface finish of the PCB. The presence of moisture trapped within the component can also lead to thermal imbalances. Hence, PCBs should be stored in a humidity cabinet or pre-baked before use.

Insufficient solder

SMT footprint problems occur due to excess solder, which can flow into the wrong places during the soldering process. This can cause shorts or electrical problems. It also makes the solder look dull. Excess solder can also be caused by improper design, with pads and traces being too small or thin.

Often, SMT parts placed too close to in-circuit test points interfere with the ability of the test probes to make contact. Another common problem with SMT parts is that larger components may be placed in front of the smaller ones, causing shadowing. Designers should place smaller components in front of the larger components to avoid this problem.

Insufficient solder can cause poor strength and weak joints. Insufficient wetting can also lead to a metal oxide layer on the bonded object. Solder paste must be properly applied to both the pads and the pins to ensure that the joint will remain strong.

Pad-to-pin mismatch

A problem with pad-to-pin mismatch in SMT footprint can lead to insufficient solder. This problem can cause a circuit board to be rejected from a manufacturer. There are several ways to avoid it. First, always use the right footprint library. It will help you select the right size of component pads. Secondly, keep in mind that the distance between the pad edge and the silkscreen must be the same.

Second, an incorrectly matched pad is likely to result in impedance mismatch. The problem can occur at a number of locations, including board-to-board connectors, AC coupling capacitors, and cable-to-board connectors.

Differenza e ruolo della maschera a saldare e della maschera in pasta sui PCB

Differenza e ruolo della maschera a saldare e della maschera in pasta sui PCB

Circuito stampato (PCB)

Lo spessore della maschera di saldatura e della maschera di pasta sui PCB è un fattore importante nel determinare le proprietà elettriche di un circuito stampato. Può anche determinare la sicurezza e la fattibilità dell'assemblaggio del PCB. Lo spessore consigliato va da 8 a 15um.

Cadence Allegro PCB Editor consente di controllare la configurazione dei livelli della maschera di pasta e della maschera di saldatura. Consente inoltre di definire la larghezza e i materiali di ogni strato. Questo aiuta a pianificare l'impilamento degli strati per la produzione. Lo strumento include anche un E-Book con informazioni sulle strategie di impilamento degli strati.

La gamma di colori delle maschere di saldatura è ampia. Oltre al verde, le maschere di saldatura sono disponibili anche nei colori blu e bianco. Alcuni progettisti preferiscono utilizzare maschere di saldatura di colori diversi per rendere le loro schede più identificabili o per differenziare i prototipi dai prodotti finiti. Tuttavia, l'uso della maschera di saldatura può causare un'ampia varietà di problemi nella produzione di PCB. Se non viene utilizzata correttamente, può portare a schede di qualità inferiore e a una durata di vita ridotta.

La maschera di pasta saldante deve essere applicata in modo uniforme. Lo spessore della maschera di pasta deve rientrare in un intervallo di tolleranza compreso tra 0,2 e 4 mil. Questa regola è importante per garantire che la pasta saldante sia applicata in modo uniforme e completo. Anche lo spazio tra la pasta saldante e i fili di rame è importante. Questa regola è disponibile nei software CAD più diffusi ed è fondamentale per garantire una produzione di maschere di saldatura per PCB di qualità.

La maschera di resistenza alla saldatura o di pasta è un sottile strato di materiale sulla superficie del PCB che impedisce la fuoriuscita della saldatura sulle tracce di rame. La maschera impedisce inoltre che l'ossidazione danneggi il PCB. Inoltre, previene la corrosione evitando danni dovuti all'esposizione a sostanze chimiche.

Le applicazioni critiche richiedono il massimo livello di prestazioni. Queste schede devono essere progettate per garantire che il servizio non subisca interruzioni. Di solito si tratta di prodotti commerciali o industriali ad alte prestazioni. Tuttavia, non è necessario che si tratti di prodotti critici per la vita. Ad esempio, se l'apparecchiatura deve funzionare ininterrottamente, è necessario garantire che le maschere di pasta per PCB siano entrambe riutilizzabili.

La maschera di saldatura può essere applicata con una spatola o con un processo di laminazione sotto vuoto. Per le produzioni su larga scala, si possono utilizzare stencil. Gli stencil sono in genere realizzati al laser con gli stessi dati della maschera di pasta. Inoltre, gli stencil sono trattati con diversi materiali per garantire un'elevata precisione e durata.

Le maschere di pasta per PCB e le maschere di saldatura sono essenzialmente una parte del circuito stampato stesso. La maschera di pasta è uno strato di stencil più piccolo delle piazzole del PCB. La maschera di pasta per saldatura ha un foro corrispondente nella maschera che corrisponde alle giunzioni di saldatura.

Le maschere di saldatura sono realizzate con diversi processi. Le maschere di saldatura possono essere applicate come film secco o come film sottile e opaco. Il processo di applicazione di entrambe le maschere è simile, ma ogni metodo utilizza un metodo diverso per ottenere il prodotto finito. Il primo metodo, chiamato LPSM, utilizza una pellicola fotografica per esporre la maschera di saldatura. Questo processo consente alla pellicola di polimerizzare e di rimuovere eventuali bolle d'aria.