PCB Yüzey İşlemlerinin Avantaj ve Dezavantajları

PCB Yüzey İşlemlerinin Avantaj ve Dezavantajları

Surface finishes can be classified in many different ways. This article discusses the main attributes of PCB surface finishes and the requirements of various types of PCB products. The benefits and disadvantages of each type are discussed. To determine the right surface finish for your PCB project, you can refer to the following table.

ENTEC 106(r)

Among the most widely used surface finishes in the PCB industry is ENEPIG. It is a two-layer metallic coating consisting of 2-8 min Au over 120-240 min Ni. The nickel acts as a barrier for the copper on the PCB surface. Gold protects the nickel from corrosion during storage and provides a low contact resistance. ENIG is often a cost-effective choice for PCBs, but it is important to use proper application procedures.

The advantages and disadvantages of electroplated gold over electrolytic nickel (ESN) are primarily cost-effectiveness and ease of plating. Electroplated gold over electrolytic nickel is very durable and has a long shelf life. However, electroplated gold over nickel has a higher price tag than other finishes. In addition, electroplated gold over nickel interferes with etching and must be handled with care to avoid damage.

ENEPIG

PCB surface finishes come in two major classifications: ENEPIG and ENIG. This article explores the differences between the two finishes and provides a comparison of their benefits and drawbacks. It also discusses when to use each.

The ENIG surface finish is a three-layer, bonded metallic finish. In the past, this material was mainly used on PCB boards with functional surface connections and high shelf-life requirements. However, the high cost of palladium and the requirement for a separate manufacturing line led to the failure of the material. In recent years, however, the material has made a comeback. Its high-frequency properties make it an excellent choice for high-frequency applications.

In comparison to ENIG, ENEPIG uses an additional layer of palladium between the gold and the nickel layers. This protects the nickel layer from oxidation and helps prevent the black pad problem. Because palladium prices have dropped recently, ENEPIG is now widely available. It offers the same benefits as ENIG but is more compatible with wire bonding. However, the process is more complex, requires additional labor, and can be expensive.

HASL

The HASL classification of PCB surface finish provides excellent solderability and is able to accommodate multiple thermal cycles. This surface finish was previously the industry standard, but the introduction of RoHS standards has forced it out of compliance. The alternative to HASL is lead-free HASL, which is more environmentally-friendly, safer, and better aligned with the directive.

Surface finish on PCBs is critical for reliability and compatibility. An appropriate surface finish can prevent the copper layer from oxidizing, which decreases the solderability of the PCB. However, the quality of the surface finish is only one part of the picture. Other aspects must be considered, such as the cost of board fabrication.

Sert altın

There are many classifications of PCB surface finishes, including the hard gold and soft gold finishes. Hard gold is a gold alloy that includes nickel and cobalt complexes. This type is used for edge connectors and PCB contacts and typically has a higher purity than soft gold. Soft gold, on the other hand, is typically used for wire bonding applications. It is also suitable for lead-free soldering.

Hard gold is generally used for components that have a high wear resistance. This is the type of plating that is used for RAM chips. Hard gold is also used on connectors, but the gold fingers must be 150 mm apart. Also, it is not recommended to place plated holes too close to gold fingers.

Immersion tin

PCB surface finishes are a critical process between PCB board manufacturing and circuit card assembly. They play an important role in maintaining the exposed copper circuitry and providing a smooth surface for soldering. Usually, the PCB surface finish is located at the outermost layer of the PCB, above the copper. This layer acts as a “coat” for the copper, which will ensure proper solderability. There are two types of PCB surface finishes: metallic and organic.

Immersion tin is a metallic finish that covers the copper on the PCB. It has the advantage of being able to be reworked easily in case of soldering errors. However, it has some disadvantages. For one, it can tarnish easily, and it has a short shelf life. As a result, it’s recommended that you use immersion tin PCB surface finishes only if you’re confident that your soldering processes are accurate.

Esnek PCB Neden Sertleştiricilere İhtiyaç Duyar?

Esnek PCB Neden Sertleştiricilere İhtiyaç Duyar?

A PCB stiffener is required to give your PCB its rigidity. There are several materials available to stiffen PCBs. Some are more expensive than others, such as FR4 or stainless steel. You need to decide which type is best for your specific needs.

Stainless steel

Flexible printed circuit boards (PCBs) are among the most popular types of PCBs on the market today. Their flexibility allows designers to design circuitry that isn’t possible with rigid circuits. However, a flexible PCB’s lack of stiffness can lead to performance and durability issues. For this reason, flexible PCBs often include stainless steel stiffeners.

A stiffener may be either thick or mass-oriented and attached to a flexible PCB on the same side as the components. If the flexible PCB is assembled with plated through-hole connections, the stiffeners may be attached to the opposite side of the connector. The stiffeners are then sealed into place with pressure-sensitive adhesives or thermal bonding.

The use of stiffeners for flexible PCBs is most commonly used for flex circuits. They help maintain a proper thickness of the flex circuit and prevent stress on the components and solder joints. This type of stiffener can be attached with thermally bonded acrylic adhesives or PSA.

Alüminyum

Stiffeners are often required for flexible PCBs. They reduce the flexibility of the board and provide mechanical support for components during assembly. They also serve a role in heat dissipation. There are several types of stiffeners, and each one provides different benefits. For example, stiffeners can improve solder resistance, increase bond strength, and limit the bending ability of the board.

Generally, rigideners are attached to a PCB using pressure sensitive adhesive tape. PSA is a popular adhesive material for this purpose, which is designed to withstand high-temperature reflow cycles. The type of adhesive used depends on the length and location of the stiffeners. If the stiffeners extend beyond the flex circuit side, it is important to use PSA to attach them to the board. Additionally, PSA may not be suitable for stiffeners that are too short or too long.

Aluminum is an alternative material for stiffeners. This material has better heat-sink and rigidity than other materials. Aluminum is more expensive, but can be more durable than other materials.

Kapton

When working with flexible PCBs, it is necessary to consider stiffeners in your design. Adding a stiffener can increase solder resistance and strengthen the connections between components. It can also help with strain relief and heat dissipation. In most cases, stiffeners are bonded on the same side of the flexible PCB as the components.

FR4 and polyimide are two materials that are commonly used for stiffeners. These materials are cheap and can provide a flat surface to the flexible PCB. They also provide excellent solder resistance and can provide the required support during pick-and-place processes.

The placement of stiffeners is important because they must be installed on the same side as the components to be mounted. This also allows easy access to the solder pads. While stiffeners are important, some customers may choose to skip the stiffeners altogether and use a FR-4 frame instead of an SMT carrier.

FR4

FR4 stiffeners for flexible PCBs are an excellent way to maintain and route flexible PCBs. They work by extending a strip of FR-4 stiffener material into a flexible PCB array. This helps the flex PCB maintain its proper shape and avoid cracks in the conductor layers. In addition to providing support during assembly, these devices can also act as heat dissipation devices.

FR4 stiffeners can be made of a variety of materials, including stainless steel and aluminum. Stainless steel stiffeners are more resistant to corrosion, are more adaptable and more resistant to a wide range of temperature conditions. Stainless steel stiffeners are usually thin, ranging from 0.1 to 0.45mm.

FR4 stiffeners are added to a flexible circuit as the final fabrication step. They can be applied with either pressure sensitive or thermal-set adhesive. The choice may depend on the end-use, but pressure-sensitive stiffeners are usually less expensive than thermal-set adhesive. In addition, thermal-set adhesive requires the flex to be placed in a lamination press, which applies heat to cure the adhesive.

Elektronik Üretim Firmalarını İşe Alırken Dikkat Edilmesi Gereken Önemli Hususlar

Elektronik Üretim Firmalarını İşe Alırken Dikkat Edilmesi Gereken Önemli Hususlar

Bir elektronik imalat şirketi tarafından üretilen ürünlerin kalitesi, pazardaki başarısı için önemli bir belirleyici faktördür. Kalite sertifikalarına sahip şirketler ek bir avantajdır. Ayrıca, bir şirketin ürünü için belirli bir pazarı hedeflemesi önemlidir. Buna ek olarak, şirket doğru pazar hedefleme stratejisine sahip olmalı ve bu iddiayı destekleyecek kalite sertifikalarına sahip olmalıdır.

Elektronik üretim şirketlerini işe alırken ürün geliştirme ve üretim önemli hususlardır

Elektronik ürünlerin geliştirilmesi ve üretilmesi süreci, elektronik üretim sürecinin önemli bir parçasıdır. Bu iki bileşen, müşteri spesifikasyonlarını karşılayan ürünler yaratmak için birlikte çalışır. Bu sektörde üretilen birçok ürün türü vardır. Tüketici ürünleri her gün kullandığımız ürünleri içerirken, endüstriyel ürünler havacılık ve otomotiv gibi endüstriler tarafından kullanılır. Askeri ürünler ise ulusların silahlı kuvvetleri tarafından kullanılmaktadır.

Bir elektronik üretim şirketini işe alırken aklınızda bulundurmanız gereken birkaç faktör vardır. İlk olarak, ekibinizi geliştirmeniz gerekir. Ekip çalışanları, ortakları, tedarikçileri ve satıcıları içermelidir. Çalışanlar malları üretmekten sorumluyken, ortaklar ve tedarikçiler ekipman ve hammadde tedarik eder. Son olarak, satıcılar ürünleri son kullanıcılara satmaktan sorumludur. Dikkate alınması gereken bir diğer husus da mali durumdur. Muhasebe yazılımını kullanarak harcamalarınızı takip etmeli veya defterleri tutması için bir muhasebeci tutmalısınız.

Kalite kontrol bir diğer önemli husustur. Bir kalite kontrol sistemi kayıpları ve aksaklıkları azaltmaya yardımcı olur ve maliyetleri düşük tutar. Benzer şekilde, kalite kontrol hükümet düzenlemelerine uygunluğun sağlanmasına yardımcı olur. Otomotiv endüstrisi gibi bazı endüstrilerde, ürünün çıktısı tüketicilerin hayatlarını doğrudan etkileyebilir. Bu nedenle, bir şirket sırf tasarruf etmek için asla kalite kontrolden kaçınmamalıdır.

Kalite sertifikaları, elektronik üretimindeki her türlü kalite güvencesine eklenen bonuslardır

Elektronik sektöründe kalite standartları en önemli endişe kaynağı haline gelmiş olsa da, kalite sertifikaları zorunlu değildir. Bu, elektronik sözleşme üreticilerinin, küçük ve orta ölçekli işletmelerin ve hatta bazı devlet kurumlarının hizmet sunmak için kalite sertifikaları almasına gerek olmadığı anlamına gelir. Bununla birlikte, kalite sertifikaları genellikle savunma müteahhitleri, devlet kurumları ve ulaşım endüstrisi tarafından talep edilmektedir.

ISO sertifikasına sahip bir elektronik üretim şirketi seçmek, zamandan ve paradan tasarruf etmenize ve müşteri memnuniyetinizi artırmanıza yardımcı olacaktır. Buna ek olarak, sertifikalı bir şirket seçmek, süreçlerinin yüksek standartta olduğunu ve sürekli olarak geliştiklerini bilmek size huzur verecektir.

Üretim sürecini iyileştirmenin yanı sıra, kalite sertifikaları ürünlerinizi geliştirmenize ve satıcılarla iletişim kurmanıza yardımcı olacaktır. Kalitede tutarlılık, üretimde başarı ve kârlılık için hayati bir faktördür. Elektronikte tutarlılık kritik önem taşır. Standartlara ve spesifikasyonlara uygunluk müşteri memnuniyetini ve marka itibarını artıracaktır.

Elektronik üretim sektöründe başarı için pazarları hedeflemek kritik önem taşır

Elektronik üretim işi için bir fikriniz varsa, ürünleriniz için pazarları hedeflemeniz gerekir. Bu iki şekilde gerçekleştirilebilir: ürün geliştirme ve üretim. Ürün geliştirme, yeni ürünlerin tasarlanmasını ve oluşturulmasını içerirken üretim, müşteri spesifikasyonlarını karşılayan ürünlerin oluşturulmasını içerir. Hedeflenecek iki ana ürün türü vardır: günlük olarak kullandığımız ürünler olan tüketici ürünleri ve tüm dünyada endüstriyel veya askeri güçler tarafından kullanılan ürünler olan endüstriyel ürünler.

Elektronik üretim işinin türü ne olursa olsun, hedef pazarların demografik özelliklerini anlamak önemlidir. Pazar segmentasyonu cinsiyet, yaş ve gelir düzeyi de dahil olmak üzere çeşitli temellerde yapılabilir. Demografik segmentasyon size ürünlerinizi satın alma olasılığı en yüksek olan grupların bir listesini verebilir. Öte yandan psikografik segmentasyon, en kârlı pazar segmentlerini hedeflemenize yardımcı olabilir.

En kârlı pazarları belirlemenin yanı sıra, küresel pazarların Ebola gibi olaylardan nasıl etkilendiğini de anlamanız gerekir. Ebola salgını Almanya dışında ABD, Çin ve Hindistan gibi ülkeleri de etkileyecektir. Bu durum otomotiv, bilgisayar ve iletişim sektörlerini etkileyecektir. Ayrıca, işletmelerin bir karantina durumunda bile çalışmaya devam etmesini sağlayacak uzaktan izleme cihazlarına olan ihtiyacı da artırabilir.

Elektronik imalat sektöründe işe alımla ilgili sorunlar

Elektronik sektöründeki beceri açığı daha da keskinleşirken, şirketler iyi çalışanları elde tutmak ve yenilerini çekmek için uyum sağlamalıdır. Bu da esnek programlar, tavsiye bonusları ve daha iyi maaşlar gibi teşvikler sunmak anlamına geliyor. İyi yetenekleri işe almak bir kuruluşun uzun vadeli başarısı için çok önemlidir, bu nedenle işverenlerin çalışanları mutlu ve bağlı tutmanın yollarını aramaları gerekir. Başarılı işe alımın kilit unsurlarından biri de aday değerlendirmesidir, özellikle de sosyal beceriler üzerinde durulmalıdır.

PCB Via Hole'un İşlevi ve Prensibi Nedir?

PCB Via Hole'un İşlevi ve Prensibi Nedir?

A PCB via hole is an open hole, drilled through a PCB. The wall of the hole is coated with a plating solution, which allows electrical signals to flow through the hole. When drilling a via hole, it is important to follow fabricator rules to ensure the correct diameter and aspect ratio. The minimum distance between adjacent vias must also be observed.

Through-hole vias

PCB through-hole vias are commonly used for signal transitions on circuit boards. There are various types of vias, including blind vias, buried vias, and microvias. Each type of via requires a certain procedure during placement. These vias are placed during the routing stage of the design process and can either be manually placed or automatically placed using EDA software. By following PCB via design rules, a circuit board can be manufactured to the exact specifications it needs.

The principle and function of PCB through-hole vias is to route the signal away from the pad. This is usually done with the use of a solder mask. This will prevent solder paste from wicking into the via, which can result in connection failures. However, if a via is positioned inside a pad drilling hole, the soldermask cannot be used on the via, which creates a reliability problem during assembly.

Buried vias

Buried vias are used to increase the circuitry on a PCB without increasing the board’s size or weight. They are fabricated using a different process from a standard double-sided PCB. Unlike other types of buried vias, they do not affect surface mount components or trace.

Buried vias are often used for design reasons, including meeting component density requirements. They also reduce board size, but the process also requires more precision checks and steps in the manufacturing process. Buried vias are also cheaper to produce, but you should use a reputable electronic contract manufacturing partner for the project.

Microvias

Microvias are holes with a small diameter that are plated. They are used to increase wiring density while reducing the number of layers on the circuit board. Microvias also reduce the need for through-hole vias and allow for a smaller overall pad size. They are also one of the most cost-effective methods for increasing wiring density. This article focuses on the benefits of microvias and how they can help you make your design work better.

Microvias are used to reduce the number of holes on a printed circuit board. They can be as small as 15 um in diameter. This technique requires more time and effort but has significant advantages. Microvias also offer better signal integrity because they have shorter connection paths with less parasitic inductance.

Anilinear ring

The PCB via hole is a hole drilled through all layers of the PCB and plated with copper for electrical connection. This hole has a cylindrical shape and a thin diameter. Its diameter and strength depend on the diameter of the copper pad surrounding it.

PCB vias can be made of different materials. The materials used in vias are often made from various metals. Vias are typically made of copper or epoxy. Using via-in-pads minimizes PCB space, resulting in smaller boards. However, this practice can be troublesome because soldering may fill up the via holes. This is why it is recommended to use via-in-pads as little as possible.

Reliability

When designing a PCB, it is important to consider how reliable the PCB via hole is. If it fails to operate reliably, it can lead to reliability issues. Reliability issues may also result from solder leakage into the via. This webinar will help you understand why reliability of PCB via holes is important, and offer some solutions.

A PCB via hole’s reliability depends on its size. There are two basic types of via holes: blind vias and buried vias. Both are important for signal integrity, as they reduce noise and EMI, and help prevent cracking and delamination. In general, the size of a PCB via hole should be six to 150 micrometers.

Benefits

PCB via holes are an excellent way to ensure the reliability of your circuit boards. They allow the PCB to be plated without air or other liquids getting trapped inside. By using this technique, you can increase the reliability of your circuit boards and improve assembly yields. This process is also very effective in helping you minimize the risk of voids.

PCB via hole technology is a popular method of signal transfer. This technique places copper pads directly on the via, rather than routing a signal trace away from the component’s copper surface. This process also reduces the amount of space needed for trace routing. This method is most commonly used with BGA components with pitches of 0.5mm and smaller. Using this technology reduces the length of signal paths and reduces both capacitance and parasitic inductance.

Understanding the Difference Between FFC and FPC Wiring

Understanding the Difference Between FFC and FPC Wiring

If you’re thinking of replacing or upgrading your wiring, you should know the difference between FPC and FFC cables. The former is thicker and has two layers of wire sandwiching the insulation point. The latter is thinner and has a single conductor layer, saving space. Both types are available in a variety of sizes and shapes. In fact, FPCs are available in as small as 0.15mm.

FPC

The first thing that you need to know is that there are two types of flexible printed circuits. They differ from each other in several ways. First, a single-layer circuit has only one conductor layer while a multilayer circuit has multiple layers. Single-layer circuits are generally cheaper to produce than double-sided circuits.

Another major difference between FFC and FPC is the thickness of the cables. The former is much thinner than FFC and is generally between 0.5 and 0.8mm. The latter is typically between 1.5 and 2.54mm thick. While they are both flexible, they are not as versatile as flexible flat cables.

While the two kinds of flexible cables are similar, FFC is more versatile and often requires less space. It also offers better EMI/RFI suppression and eliminates wire coupling problems.

IDC

One of the most important factors in IDC wiring is the type of connector used. There are a few different types available. The first type is the traditional two-piece IDC connector. This design is used in many applications and has many advantages. For example, it can save space, reduce bill of materials and simplify assembly. It also eliminates the need to use a complementary mating connector.

The second type is the flat flex cable. This cable is very thin and can be used in many applications. For example, it is commonly used in laptops and keypad cables. It is also used in printers to connect to the printhead. While the two types are similar, there are a few major differences.

IDT

If you’re planning to install new wiring in your PC, it’s essential to understand the difference between FFC and FPC wiring. While both types of cables are conductive, FFC wiring has advantages over FPC in a few ways. First, FPC cables are generally thinner. They range in thickness from 0.15mm to 0.2mm. They’re also relatively inexpensive, and they’re easy to install. However, one disadvantage is that connecting FPCs to FFCs can be complicated.

Another major difference between FFC and FPC wiring is their pitch. While FFC cables have straight through conductors, FPCs can have bent or angle conductors. As such, FPCs are better suited for board-to-board interconnect.

Typical applications

Typically, FFC and FPC are used in the same applications, such as antennas, LCD televisions, cameras, laptops, printers, and aviation. These two types of flexible wires have some differences, however. For example, flexible printed circuits are made of FCCL (Flexible Copper Clad Laminate), while flexible flat cables are made of polyethylene terephthalate (PET), copper wires, and a polyethylene terephthalate coating.

Typically, FFCs are used for straight-through wiring, while FPCs have bends, angles, and other designs. While FFCs are the preferred choice for data cables, FPCs are more flexible and can be used in more applications.

SMT Ayak İzi ile İlgili En Çok Karşılaşılan Sorunlar Nelerdir?

SMT Ayak İzi ile İlgili En Çok Karşılaşılan Sorunlar Nelerdir?

SMT footprint is widely used for implementing microcontrollers. However, there are several problems related to SMT. Here are the common ones: Insufficient solder, thermal imbalances, and misplacement of components. These problems can also be caused by faulty part name, library name, and footprint.

Misplacement of components

If a component is dropped rather than placed on a surface mount footprint, the result can be a faulty PCB. In this case, a modification is necessary to the design to ensure that all parts are visible from above. In such a case, AOI may be used to detect the fault before the reflow process begins.

A bad placement of SMT components can lead to poor performance and even board failure. It is very important to place parts according to the schematics in order to avoid these problems. It is also important to keep analog and digital components separated and allow for clear signal return paths on the reference plane.

Thermal imbalances

SMT footprints can be a problem because they do not allow the proper amount of solder to reach the in-circuit test points. This can lead to poor solder joints, especially if the component is wave-solderable. However, this issue can be avoided by properly building the PCB footprint. To do this, it is important to remember to create the pads of the part to be large enough to contain solder paste. When the pads are too small, too much solder may flow over to another pad, causing bridging. This can be caused by improperly created pads or solder paste masks. It can also happen if the parts are placed too close together.

Another problem with smt footprints is the uneven amount of copper on both sides of the footprint. This can lead to component misplacement and thermal imbalance. In order to avoid this problem, PCBs should have a balanced copper distribution. It is also important to have the proper reflow profile to reduce delta T. This will also improve the surface finish of the PCB. The presence of moisture trapped within the component can also lead to thermal imbalances. Hence, PCBs should be stored in a humidity cabinet or pre-baked before use.

Insufficient solder

SMT footprint problems occur due to excess solder, which can flow into the wrong places during the soldering process. This can cause shorts or electrical problems. It also makes the solder look dull. Excess solder can also be caused by improper design, with pads and traces being too small or thin.

Often, SMT parts placed too close to in-circuit test points interfere with the ability of the test probes to make contact. Another common problem with SMT parts is that larger components may be placed in front of the smaller ones, causing shadowing. Designers should place smaller components in front of the larger components to avoid this problem.

Insufficient solder can cause poor strength and weak joints. Insufficient wetting can also lead to a metal oxide layer on the bonded object. Solder paste must be properly applied to both the pads and the pins to ensure that the joint will remain strong.

Pad-to-pin mismatch

A problem with pad-to-pin mismatch in SMT footprint can lead to insufficient solder. This problem can cause a circuit board to be rejected from a manufacturer. There are several ways to avoid it. First, always use the right footprint library. It will help you select the right size of component pads. Secondly, keep in mind that the distance between the pad edge and the silkscreen must be the same.

Second, an incorrectly matched pad is likely to result in impedance mismatch. The problem can occur at a number of locations, including board-to-board connectors, AC coupling capacitors, and cable-to-board connectors.

PCB'lerde Lehim Maskesi ve Pasta Maskesinin Farkı ve Rolü

PCB'lerde Lehim Maskesi ve Pasta Maskesinin Farkı ve Rolü

Baskılı devre kartı (PCB)

PCB'lerdeki lehim maskesi ve macun maskesinin kalınlığı, bir devre kartının elektriksel özelliklerini belirlemede önemli bir faktördür. Ayrıca PCB montajının güvenliğini ve fizibilitesini de belirleyebilir. Önerilen kalınlık 8 ila 15um arasında değişir.

Cadence Allegro PCB Editor, macun maskesi ve lehim maskesi katman yapılandırmasını kontrol etmenizi sağlar. Ayrıca her katmanın genişliğini ve malzemelerini tanımlamanıza olanak tanır. Bu, üretim için katman istiflemesini planlamanıza yardımcı olur. Araç ayrıca katman istifleme stratejileri hakkında bilgi içeren bir E-Kitap içerir.

Lehim maskesi renk aralığı geniştir. Yeşilin yanı sıra mavi ve beyaz renklerde de lehim maskeleri mevcuttur. Bazı tasarımcılar, panolarını daha tanımlanabilir hale getirmek veya prototipleri bitmiş ürünlerden ayırmak için farklı renkli lehim maskeleri kullanmayı tercih eder. Bununla birlikte, lehim maskesi kullanımı PCB üretiminde çok çeşitli sorunlara neden olabilir. Doğru kullanılmazsa, daha düşük kaliteli panolara ve daha az kullanım ömrüne yol açabilir.

Lehim pastası maskesi eşit şekilde uygulanmalıdır. Pasta maskesinin kalınlığı 0,2 ila 4 mil tolerans aralığında olmalıdır. Bu kural, lehim pastasının eşit ve tam olarak uygulandığından emin olmak için önemlidir. Lehim pastası ile bakır teller arasındaki boşluk da önemlidir. Bu kural popüler CAD yazılımlarında mevcuttur ve kaliteli PCB lehim maskesi üretimini sağlamak için hayati bir kuraldır.

Lehim direnci veya macun maskesi, PCB'nin yüzeyinde lehimin bakır izlerine sızmasını önleyen ince bir malzeme tabakasıdır. Maske ayrıca oksidasyonun PCB'ye zarar vermesini de önler. Ayrıca, kimyasallara maruz kalma nedeniyle hasarı önleyerek korozyonu önler.

Kritik uygulamalar en üst düzeyde performans gerektirir. Bu panolar, hizmette herhangi bir kesinti olmamasını sağlayacak şekilde tasarlanmalıdır. Bunlar genellikle yüksek performanslı ticari veya endüstriyel ürünlerdir. Ancak, hayati öneme sahip olmaları gerekli değildir. Örneğin, ekipmanın sürekli çalışması gerekiyorsa, PCB macun maskelerinin her ikisinin de yeniden kullanılabilir olmasını sağlamak gerekir.

Lehim maskesi bir silecekle veya vakumlu laminasyon işlemiyle uygulanabilir. Büyük ölçekli üretim çalışmaları için şablonlar kullanılabilir. Şablonlar tipik olarak macun maskesi ile aynı verilerle lazerle üretilir. Buna ek olarak, şablonlar yüksek hassasiyet ve dayanıklılık sağlamak için çeşitli malzemelerle işlenir.

PCB macun maskeleri ve lehim maskeleri esasen baskılı devre kartının kendisinin bir parçasıdır. Yapıştırma maskesi, gerçek PCB pedlerinden daha küçük olan bir şablon katmanıdır. Lehim pastası maskesi, maskede lehim bağlantılarına karşılık gelen bir deliğe sahiptir.

Lehim maskeleri çeşitli işlemlerle yapılır. Lehim maskeleri kuru bir film olarak veya ince, opak bir film olarak uygulanabilir. Her iki maske için de uygulama süreci benzerdir, ancak her yöntem bitmiş ürünü yapmak için farklı bir yöntem kullanır. LPSM olarak adlandırılan ilk yöntem, lehim maskesini ortaya çıkarmak için bir fotoğraf filmi kullanır. Bu işlem filmin sertleşmesini ve hava kabarcıklarının giderilmesini sağlar.